Cloud-based in-situ battery life prediction and classification using machine learning

预言 电池(电) 分类 均方误差 可靠性工程 机器学习 人工智能 数据挖掘 计算机科学 工程类 统计 算法 数学 量子力学 物理 功率(物理)
作者
Yongzhi Zhang,Mingyuan Zhao
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:57: 346-359 被引量:76
标识
DOI:10.1016/j.ensm.2023.02.035
摘要

In-situ battery life prediction and classification can advance lithium-ion battery prognostics and health management. A novel physical features-driven moving-window battery life prognostics method is developed in this paper, which can be used to predict the battery remaining useful life (RUL) and knee-point, and for the first time to classify the battery life in real-time. The relationship between the physical features and battery life is captured by using machine learning. The proposed methodology is validated based on experimental data of more than 100 cell samples. The results show that the method predicts accurate RUL and knee-point, with the root mean squared error and mean absolute percentage error being, respectively, low to 55 cycles and 3.55%. The battery life is also classified accurately based on the data of only one single cycle, with the sorting accuracy up to 91.84%, facilitating fast and efficient sorting/screening of retired batteries in the future. Both the prediction and classification accuracies decrease as the moving-window moves forward, indicating accurate life prediction can still be obtained even when the battery has been put in operation for years.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lzy完成签到 ,获得积分10
刚刚
orixero应助geyunjie采纳,获得10
1秒前
1秒前
SunXinwei完成签到,获得积分10
2秒前
2秒前
wanci发布了新的文献求助20
2秒前
2秒前
Stella应助852采纳,获得10
3秒前
Zzz驳回了戴云溥应助
3秒前
友好灵松完成签到,获得积分10
3秒前
4秒前
4秒前
jun发布了新的文献求助10
4秒前
4秒前
灵巧谷波发布了新的文献求助10
5秒前
5秒前
freebird应助BEIBEI采纳,获得10
6秒前
6秒前
6秒前
HopeLee发布了新的文献求助10
6秒前
SccS发布了新的文献求助10
6秒前
拼搏蜗牛发布了新的文献求助10
7秒前
朱凌娇完成签到,获得积分10
7秒前
ji发布了新的文献求助10
7秒前
kryie发布了新的文献求助10
7秒前
8秒前
carnationli完成签到,获得积分20
8秒前
9秒前
77发布了新的文献求助10
9秒前
许容完成签到,获得积分10
9秒前
9秒前
夜琉璃应助头哥采纳,获得30
9秒前
全鑫完成签到,获得积分10
10秒前
10秒前
雪山飞龙发布了新的文献求助10
10秒前
jjjdj发布了新的文献求助10
10秒前
科研通AI6应助Kaen采纳,获得10
11秒前
12秒前
12秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582358
求助须知:如何正确求助?哪些是违规求助? 4666421
关于积分的说明 14762778
捐赠科研通 4608475
什么是DOI,文献DOI怎么找? 2528699
邀请新用户注册赠送积分活动 1498050
关于科研通互助平台的介绍 1466736