Cloud-based in-situ battery life prediction and classification using machine learning

预言 电池(电) 分类 均方误差 可靠性工程 机器学习 人工智能 数据挖掘 计算机科学 工程类 统计 算法 数学 量子力学 物理 功率(物理)
作者
Yongzhi Zhang,Mingyuan Zhao
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:57: 346-359 被引量:76
标识
DOI:10.1016/j.ensm.2023.02.035
摘要

In-situ battery life prediction and classification can advance lithium-ion battery prognostics and health management. A novel physical features-driven moving-window battery life prognostics method is developed in this paper, which can be used to predict the battery remaining useful life (RUL) and knee-point, and for the first time to classify the battery life in real-time. The relationship between the physical features and battery life is captured by using machine learning. The proposed methodology is validated based on experimental data of more than 100 cell samples. The results show that the method predicts accurate RUL and knee-point, with the root mean squared error and mean absolute percentage error being, respectively, low to 55 cycles and 3.55%. The battery life is also classified accurately based on the data of only one single cycle, with the sorting accuracy up to 91.84%, facilitating fast and efficient sorting/screening of retired batteries in the future. Both the prediction and classification accuracies decrease as the moving-window moves forward, indicating accurate life prediction can still be obtained even when the battery has been put in operation for years.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助儒雅雁荷采纳,获得10
1秒前
1秒前
2秒前
2秒前
罗亚亚发布了新的文献求助10
3秒前
3秒前
热心市民蚂蚱殿下完成签到,获得积分10
3秒前
3秒前
喜悦寒凝完成签到,获得积分10
3秒前
wop111应助调皮小蘑菇采纳,获得10
4秒前
changping应助gzupppp采纳,获得10
4秒前
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
7秒前
文艺紫菜应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得30
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
GPTea应助科研通管家采纳,获得150
7秒前
文艺紫菜应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
饶天源发布了新的文献求助10
7秒前
西西发布了新的文献求助10
7秒前
Zx_1993应助科研通管家采纳,获得20
7秒前
浮游应助科研通管家采纳,获得10
7秒前
7秒前
8秒前
8秒前
8秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5133576
求助须知:如何正确求助?哪些是违规求助? 4334702
关于积分的说明 13504381
捐赠科研通 4171698
什么是DOI,文献DOI怎么找? 2287273
邀请新用户注册赠送积分活动 1288197
关于科研通互助平台的介绍 1229045