Heat and park attendance: Evidence from “small data” and “big data” in Hong Kong

出勤 大数据 样品(材料) 全球定位系统 气候变化 气象学 地理 环境科学 计算机科学 政治学 生态学 电信 数据挖掘 化学 生物 法学 色谱法
作者
Tongping Hao,Haoliang Chang,Sisi Liang,P. D. Jones,Pak Wai Chan,Lishuai Li,Jianxiang Huang
出处
期刊:Building and Environment [Elsevier BV]
卷期号:234: 110123-110123 被引量:13
标识
DOI:10.1016/j.buildenv.2023.110123
摘要

Urban heat disrupts the use of parks, although the extent of such disruptions remains disputed. Literature relies on “small data” methods, such as questionnaires, field studies, or human-subject experiments, to capture the behavioural response to heat. Their findings are often in contradiction with each other, possibly due to the small sample sizes, the short study period, or the few sites available in a single study. The rise of “big data” such as social media offers new opportunities, yet its reliability and usefulness remain unknown. This paper describes a study using Twitter data (tweets) to study park attendance under the influence of hot weather. Some 20,000 tweets geo-coded within major parks were obtained in Hong Kong over a period of three years. Field studies have been conducted in parallel in a large park covering the hot and cool seasons and some 40,000 attendance were recorded over three months. Both the “small” and “big data” were analyzed and compared to each other. Findings suggest that a 1 °C increase in temperature was associated with some 4% drop in park attendance and some 1% drop in park tweets. The differences between the two data sources be explained by the ‘leakage’ of indoor tweets to parks caused by GPS drift near buildings. The Universal Thermal Climate Index can better predict self-reported thermal sensations, compared with other biometeorological indicators. This study has contributed to methodologies and new evidence to the study of behaviors and thermal adaptations in an outdoor space, and geo-coded tweets can serve as a powerful data source.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千幻完成签到,获得积分10
1秒前
fatcat完成签到,获得积分10
1秒前
Andy完成签到,获得积分10
2秒前
4秒前
5秒前
无花果应助白水采纳,获得30
8秒前
温文尔雅完成签到,获得积分10
8秒前
不过尔尔完成签到 ,获得积分10
8秒前
打打应助pretend采纳,获得10
8秒前
刻苦的寒凝完成签到,获得积分10
9秒前
lzw完成签到 ,获得积分10
10秒前
外向云朵完成签到,获得积分20
12秒前
13秒前
汉堡包应助hanliulaixi采纳,获得10
14秒前
Paris完成签到,获得积分10
15秒前
yyy完成签到,获得积分10
15秒前
酷波er应助阿冷采纳,获得10
17秒前
大大怪完成签到,获得积分10
17秒前
dahuihui完成签到,获得积分20
19秒前
大大怪发布了新的文献求助10
20秒前
orixero应助ryd采纳,获得10
20秒前
爱lx完成签到,获得积分10
20秒前
冷艳的友瑶完成签到,获得积分10
20秒前
非我完成签到 ,获得积分10
21秒前
长成大树完成签到,获得积分10
21秒前
整齐的达发布了新的文献求助10
22秒前
sxy完成签到,获得积分10
24秒前
顺利如冰完成签到,获得积分10
24秒前
科研小民工应助shann采纳,获得100
24秒前
烟花应助吉他平方采纳,获得10
27秒前
29秒前
星星又累完成签到,获得积分10
29秒前
31秒前
大大怪发布了新的文献求助10
33秒前
pretend发布了新的文献求助10
33秒前
excellent_shit完成签到,获得积分10
33秒前
书霂完成签到,获得积分10
33秒前
共享精神应助kingripple采纳,获得10
33秒前
嘤鸣完成签到,获得积分10
34秒前
waa完成签到,获得积分10
34秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736805
求助须知:如何正确求助?哪些是违规求助? 3280699
关于积分的说明 10020699
捐赠科研通 2997414
什么是DOI,文献DOI怎么找? 1644554
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749668