Serum Proteomics Identifies Biomarkers Associated With the Pathogenesis of Idiopathic Pulmonary Fibrosis

特发性肺纤维化 生物标志物 蛋白质组学 发病机制 医学 生物标志物发现 定量蛋白质组学 疾病 生物信息学 内科学 计算生物学 肿瘤科 免疫学 生物 基因 遗传学
作者
Lan Wang,Minghui Zhu,Yan Li,Peishuo Yan,Zhongzheng Li,Xiuping Chen,Juntang Yang,Xin Pan,Huabin Zhao,Shenghui Wang,Hongmei Yuan,Mengxia Zhao,Xiaogang Sun,Ruyan Wan,Fei Li,Xiaobo Wang,Hongtao Yu,Iván O. Rosas,Chen Ding,Guoying Yu
出处
期刊:Molecular & Cellular Proteomics [Elsevier]
卷期号:22 (4): 100524-100524 被引量:19
标识
DOI:10.1016/j.mcpro.2023.100524
摘要

The heterogeneity of idiopathic pulmonary fibrosis (IPF) limits its diagnosis and treatment. The association between the pathophysiological features and the serum protein signatures of IPF currently remains unclear. The present study analyzed the specific proteins and patterns associated with the clinical parameters of IPF based on a serum proteomic dataset by data-independent acquisition using MS. Differentiated proteins in sera distinguished patients with IPF into three subgroups in signal pathways and overall survival. Aging-associated signatures by weighted gene correlation network analysis coincidently provided clear and direct evidence that aging is a critical risk factor for IPF rather than a single biomarker. Expression of LDHA and CCT6A, which was associated with glucose metabolic reprogramming, was correlated with high serum lactic acid content in patients with IPF. Cross-model analysis and machine learning showed that a combinatorial biomarker accurately distinguished patients with IPF from healthy individuals with an area under the curve of 0.848 (95% CI = 0.684-0.941) and validated from another cohort and ELISA assay. This serum proteomic profile provides rigorous evidence that enables an understanding of the heterogeneity of IPF and protein alterations that could help in its diagnosis and treatment decisions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚心焦完成签到 ,获得积分10
刚刚
1秒前
第一个相遇完成签到,获得积分10
1秒前
1秒前
2秒前
科研通AI6.1应助Gc采纳,获得10
2秒前
geo完成签到 ,获得积分10
3秒前
不能没有科研完成签到,获得积分10
3秒前
3秒前
李健的小迷弟应助Royalll采纳,获得30
4秒前
研友_ZelDDn完成签到,获得积分20
4秒前
5秒前
Zel博博完成签到,获得积分10
5秒前
5秒前
5秒前
桐桐应助小何采纳,获得10
5秒前
大模型应助肖邦采纳,获得150
6秒前
蓝天应助涨知识ing采纳,获得10
6秒前
7秒前
7秒前
8秒前
9秒前
9秒前
拉拉霍霍发布了新的文献求助10
9秒前
小蘑菇应助凶凶采纳,获得10
9秒前
Ava应助研友_ZelDDn采纳,获得10
10秒前
ZZZ发布了新的文献求助10
10秒前
10秒前
慕青应助Kate采纳,获得10
10秒前
CipherSage应助阿紫采纳,获得10
11秒前
cqwswfl完成签到,获得积分10
11秒前
zzz完成签到,获得积分10
11秒前
ttt发布了新的文献求助10
12秒前
完美梨愁发布了新的文献求助10
12秒前
过柱菜鸟发布了新的文献求助10
12秒前
暮时完成签到,获得积分10
12秒前
刘胖胖发布了新的文献求助10
12秒前
bkagyin应助longL采纳,获得10
13秒前
JM完成签到,获得积分10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106