清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A novel Q-learning-based hybrid algorithm for the optimal offloading and scheduling in mobile edge computing environments

计算机科学 算法 调度(生产过程) 边缘计算 移动边缘计算 分布式计算 云计算 数学优化 数学 操作系统
作者
Somayeh Yeganeh,Amin Babazadeh Sangar,Sadoon Azizi
出处
期刊:Journal of Network and Computer Applications [Elsevier]
卷期号:214: 103617-103617 被引量:7
标识
DOI:10.1016/j.jnca.2023.103617
摘要

Mobile Edge Computing (MEC) has arisen as a promising computing paradigm consisting of three tiers: Smart Mobile Devices (SMDs), fog nodes, and the cloud. The MEC enables computational offloading and execution schedules to cope with the problems of insufficient resources for the SMDs and the computational tasks' deadlines. The offloading problem determines in what order and source of the network the tasks should be performed to minimize execution time and power consumption. The main aim of the current paper is to reduce execution time and energy consumption by optimizing tasks' offloading and scheduling in MEC networks. As a result, the task scheduling and offloading are modeled as an optimization problem. Then, an enhanced hybridization of Artificial Ecosystem-based Optimization (AEO) and Arithmetic Optimization Algorithm (AOA), named E-AEO-AOA, is presented to optimize it. In the E-AEO-AOA, the AOA and AEO algorithms are initially discretized. Next, the Q-learning strategy is modified and recruited to hybridize the algorithms in a complementary manner. Subsequently, chaos theory is utilized in a local search procedure to enhance the exploitation capability of the E-AEO-AOA. Eventually, the performance of E-AEO-AOA is examined on fifteen MEC networks. In the experiments, the E-AEO-AOA is compared with AEO, AO, AOA, JS, MRFO, STOA, SCA, and TSA algorithms statistically. Besides, the algorithms' convergence rate and solutions dispersity are visually compared. Moreover, the algorithms are compared by the Wilcoxon signed-rank test. The experimental results indicate that the E-AEO-AOA surpassed competitor algorithms in 90% of cases. Likewise, in 6% of the cases, the E-AEO-AOA produced the same results as AEO, AOA and MRFO.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
31秒前
32秒前
悦耳十三发布了新的文献求助10
34秒前
我在这发布了新的文献求助10
38秒前
我在这完成签到,获得积分10
49秒前
爱静静应助科研通管家采纳,获得10
52秒前
爱静静应助科研通管家采纳,获得10
52秒前
1分钟前
bukeshuo发布了新的文献求助10
1分钟前
贪玩的野狼完成签到 ,获得积分10
2分钟前
爱静静应助科研通管家采纳,获得30
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
完美世界应助一杯茶采纳,获得10
3分钟前
克丽完成签到 ,获得积分10
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
爱静静应助科研通管家采纳,获得10
4分钟前
爱静静应助科研通管家采纳,获得20
4分钟前
爱静静应助科研通管家采纳,获得30
4分钟前
5分钟前
一杯茶发布了新的文献求助10
5分钟前
可爱的函函应助一杯茶采纳,获得10
6分钟前
bukeshuo发布了新的文献求助10
6分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
爱静静应助科研通管家采纳,获得10
6分钟前
doreen完成签到 ,获得积分10
7分钟前
没时间解释了完成签到 ,获得积分10
7分钟前
JamesPei应助bukeshuo采纳,获得10
7分钟前
zly完成签到 ,获得积分10
8分钟前
爱静静应助科研通管家采纳,获得10
8分钟前
爱静静应助科研通管家采纳,获得10
8分钟前
爱静静应助科研通管家采纳,获得10
8分钟前
爱静静应助科研通管家采纳,获得10
8分钟前
yanice完成签到,获得积分10
8分钟前
胡锦霞完成签到,获得积分10
8分钟前
9分钟前
一杯茶发布了新的文献求助10
9分钟前
9分钟前
xiaoheshan完成签到,获得积分10
9分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Актуализированная стратиграфическая схема триасовых отложений Прикаспийского региона. Объяснительная записка 360
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167202
求助须知:如何正确求助?哪些是违规求助? 2818687
关于积分的说明 7921888
捐赠科研通 2478444
什么是DOI,文献DOI怎么找? 1320323
科研通“疑难数据库(出版商)”最低求助积分说明 632748
版权声明 602438