Quantitative assessment rules and models for dynamic disaster risk in high-density gas gathering stations: Practical application in a largest CBM gathering station

风险评估 环境科学 计算机科学 运筹学 工程类 土木工程 可靠性工程 计算机安全
作者
Qi Jing,Lin Yu,Fengyi Lan,Yuntao Li
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:252: 110453-110453
标识
DOI:10.1016/j.ress.2024.110453
摘要

Coalbed Methane (CBM) gathering stations involve multiple engineering disciplines, with a concentration of pressure vessels and strong production continuity. Once accidents occur, they can easily result in severe casualties, property losses, and environmental pollution. Therefore, prior to the large-scale promotion and urban application of CBM, this paper proposes a dynamic quantitative risk assessment model for the operational and task-related risks in CBM gathering stations. Firstly, various methods are employed for risk factor identification. Then, a dynamic Bayesian network (DBN) model is constructed to assess the dynamic operational risks and task-related risks of CBM gathering stations under different maintenance conditions. This model provides the initial probability of operational risk occurrence at stations, predicts changes in the probability of equipment multi-state operational risks under different maintenance conditions over 10 years, and forecasts the probability of task-related risks during operations. Finally, a combined weighting model is established, incorporating instance information to comprehensively evaluate safety management and derive safety management correction coefficients. These coefficients are integrated with the probabilities of station operation and task-related risk occurrence to ultimately determine the likelihood of operational risk occurrence during station production, completing the dynamic quantitative assessment of operational risks in CBM gathering stations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细腻沅发布了新的文献求助10
2秒前
火羽白然完成签到 ,获得积分10
2秒前
冰西瓜完成签到 ,获得积分10
3秒前
季忆发布了新的文献求助10
3秒前
3秒前
cc发布了新的文献求助10
4秒前
Hello应助糊涂的小伙采纳,获得10
4秒前
甜甜的冷霜完成签到,获得积分10
4秒前
hkxfg发布了新的文献求助10
5秒前
谭谨川完成签到,获得积分10
5秒前
李爱国应助云中渊采纳,获得10
6秒前
6秒前
LT发布了新的文献求助10
7秒前
7秒前
高兴藏花发布了新的文献求助10
7秒前
9秒前
Allen完成签到,获得积分10
10秒前
10秒前
楪i完成签到,获得积分10
10秒前
值得完成签到,获得积分10
12秒前
12秒前
远山完成签到,获得积分10
13秒前
星星发布了新的文献求助10
13秒前
nanhe698发布了新的文献求助20
13秒前
阳光无声完成签到,获得积分10
13秒前
金色年华发布了新的文献求助10
13秒前
shatang完成签到,获得积分10
14秒前
15秒前
Owen应助一天八杯水采纳,获得10
15秒前
所所应助静静子采纳,获得10
16秒前
所所应助jy采纳,获得10
16秒前
hkxfg完成签到,获得积分10
16秒前
duo完成签到,获得积分10
17秒前
18秒前
spurs17发布了新的文献求助10
18秒前
18秒前
善学以致用应助BaekHyun采纳,获得10
18秒前
19秒前
19秒前
nanhe698完成签到,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808