材料科学
复合材料
填料(材料)
聚乙烯
交联聚乙烯
电磁屏蔽
抗冲击性
作者
Elsayeda F. Salem,Walaa Abd-Elmonem Elkatan,Nesreen R. Abdel Wahab
标识
DOI:10.1080/1023666x.2024.2394226
摘要
Polymers play an essential role in both industry and medical fields due to their diverse and adaptable properties. In this work, prepared crosslinking polyethylene (XLPE) samples with hydrophilic bentonite nanoclay fillers (H2Al2O6Si) at concentrations of 0, 1, 2.5, 4, and 5 wt% enhance their flame-retardant and radiation shielding efficiency. The research investigated flame retardancy and thermal stability parameters. The XLPE/H2Al2O6Si nanocomposite polymer sheets were exposed to a collimated beam of fast neutrons using an Am/Be neutron source (5 Ci) and to gamma radiation using a 137Cs point source (5 μCi) to assess their radiation shielding properties. The study found that uniform dispersion of nanoclay particles enhanced the thermal properties of the composite, forming a char layer that acted as a barrier, slowing thermal decomposition and reducing the heat release rate. Limiting oxygen index (LOI) increased from 28% to 34%, and burning rate improved with higher nanoclay concentrations. Additionally, absorption and optical band gap calculations decreased with increasing filler concentrations. Radiation attenuation capabilities increased by approximately 40% for neutrons and 30% for gamma radiation compared to pure XLPE. The study concluded that incorporating nanoclay fillers into XLPE enhances its shielding capabilities and improves flame resistance properties, making the prepared samples suitable for various industrial applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI