钢筋
强化学习
心理学
认知科学
认知心理学
计算机科学
人工智能
社会心理学
作者
Tim Vriens,Mattias Horan,Jacqueline Gottlieb,Massimo Silvetti
标识
DOI:10.1017/s0140525x24000219
摘要
We argue that the type of meta-learning proposed by Binz et al. generates models with low interpretability and falsifiability that have limited usefulness for neuroscience research. An alternative approach to meta-learning based on hyperparameter optimization obviates these concerns and can generate empirically testable hypotheses of biological computations.
科研通智能强力驱动
Strongly Powered by AbleSci AI