已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Impact of Pretension and Cycling Window on Degradation of Graphite/Silicon Composite Anodes

作者
Zhiwen Wan,Sravan Pannala,Hamidreza Movahedi,C.P.C. Wong,Charles E. Solbrig,Jason B. Siegel,Anna G. Stefanopoulou
出处
期刊:Meeting abstracts 卷期号:MA2024-01 (5): 713-713
标识
DOI:10.1149/ma2024-015713mtgabs
摘要

Challenges such as mechanical degradation and limited cycle life persist for high energy density lithium-ion batteries with silicon/graphite composite anodes. In this research work, the patterns of degradation of cells with silicon/graphite composite and NMC622 cathode are examined at varied cycling conditions and applied external pressure or pretension. The most notable outcome of this analysis is that cells cycled between 0 and 100 State-of-Charge (SoC) exhibit the most accelerated aging process. Increasing the pretension force effectively restrains the irreversible expansion of the cells, and has a positive effect on capacity retention. In this research, a comprehensive experiment was conducted involving 46 cells subjected to diverse cycling conditions, voltage windows, pretension forces, and temperatures. Reference performance tests (e.g. HPPC and 1/20 C-rate charge tests) are conducted regularly for analysis of degradation mechanisms. The capacity fade, resistance growth, and thickness increase are correspondingly shown in Figures 1, 2, and 3 with ampere hour throughput as the x-axis. The legend columns indicate test conditions, including C-rate, SoC window during cycling, temperature (in degrees Celsius), and pretension force (in psi). As is shown in all figures, there is a substantial dependence on the SoC window for cycling. To be specific, a rapid rate of capacity loss, resistance increase, and thickness increase occurs in the cell group cycled over the full SoC window (plotted in blue). Cells cycled under full SoC windows also exhibit an early accelerated fading (knee [1]) of capacity and accelerated increase (elbows [2]) of resistance and thickness. According to [3], this accelerated aging could be a consequence of side reactions and increased mechanical stress within the silicon particle when operating across a broad potential range. Meanwhile, for the cell group with restrained cycle windows (plotted in gray) the cells have not yet reached any knee, and have a relatively linear capacity loss. It should be noted that, within the range of partial cycling windows examined, cells subjected to a cycling range of 50-100 exhibit the most rapid degradation, which aligns with the conclusions presented in [4] due to the time at elevated potential. In Figure 2, the elevated temperature (depicted in red) exhibits a significant influence on the increase in resistance, potentially attributed to the growth of the solid electrolyte interface (SEI), but minimal impact on capacity loss. Maintaining other conditions constant and comparing cells under 25 psi and 15 psi (marked with hollow circles and filled circles, respectively), it is evident that a higher pretension force has a positive effect on cell capacity loss. Simultaneously, in Figure 3, the pretension force at 25 psi (marked with hollow circles) effectively restrains the irreversible expansion of the cells. The results are similar to the degradation pattern outlined in [5], it is observed that employing a high pretension force facilitates the mitigation of both degradation and expansion. As highlighted in [6], heightened temperatures lead to accelerated resistance growth. Nevertheless, the impact of various C-rates on degradation remains inconclusive [6]. This research systematically analyzed cell-level degradation through an extensive array of experiments, providing valuable insights into the intricate dynamics of capacity fade, resistance increase, and thickness growth. The study's revelation that the cycle window exerts a pronounced impact on battery health could offer crucial guidance for the design of Battery Management Systems (BMS). Moreover, the work establishes a foundational basis for future research, particularly in exploring electrode-level degradation patterns. These contributions collectively enhance the understanding of energy storage systems, offering practical implications for optimizing battery performance and longevity in various applications. [1]Attia, Peter M., et al. "“Knees” in lithium-ion battery aging trajectories." Journal of The Electrochemical Society 169.6 (2022): 060517. [2] Strange, Calum, et al. "Elbows of internal resistance rise curves in Li-ion cells." Energies 14.4 (2021): 1206. [3] Verbrugge, Mark, et al. "Fabrication and characterization of lithium-silicon thick-film electrodes for high-energy-density batteries." Journal of The Electrochemical Society 164.2 (2016): A156. [4] Xu, Bolun, et al. "Modeling of lithium-ion battery degradation for cell life assessment." IEEE Transactions on Smart Grid 9.2 (2016): 1131-1140. [5] Mohtat, Peyman, et al. "Reversible and irreversible expansion of lithium-ion batteries under a wide range of stress factors." Journal of The Electrochemical Society 168.10 (2021): 100520. [6] Pannala, Sravan, et al. "An Experimental Correlation of Degradation with Cell Reversible and Irreversible Expansion Measurement in Pouch Cells." Electrochemical Society Meeting Abstracts 243. No. 2. The Electrochemical Society, Inc., 2023. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助Cloud采纳,获得10
1秒前
ping发布了新的文献求助10
1秒前
Akim应助啊啊啊采纳,获得10
2秒前
oreo完成签到,获得积分10
4秒前
花呗发布了新的文献求助10
4秒前
古离完成签到,获得积分10
4秒前
4秒前
科研通AI6应助LL采纳,获得30
5秒前
6秒前
kentonchow应助阿歪歪采纳,获得10
7秒前
筱莜完成签到,获得积分10
7秒前
10秒前
dou发布了新的文献求助10
10秒前
11秒前
11秒前
筱莜发布了新的文献求助10
12秒前
13秒前
等待的若发布了新的文献求助10
18秒前
18秒前
19秒前
李健的粉丝团团长应助QvQ采纳,获得10
20秒前
22秒前
舒伯特完成签到 ,获得积分10
23秒前
cc发布了新的文献求助10
23秒前
25秒前
啊啊啊发布了新的文献求助10
28秒前
28秒前
QvQ完成签到,获得积分10
29秒前
畅快白凝完成签到,获得积分10
29秒前
今天你开组会了吗完成签到,获得积分10
30秒前
31秒前
ddddddddddd发布了新的文献求助10
31秒前
www完成签到 ,获得积分10
32秒前
32秒前
32秒前
32秒前
慕青应助徐志豪采纳,获得10
33秒前
张小黑完成签到,获得积分10
33秒前
肖123发布了新的文献求助10
35秒前
我不是哪吒完成签到 ,获得积分10
35秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
Machine Learning for Polymer Informatics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5384801
求助须知:如何正确求助?哪些是违规求助? 4507584
关于积分的说明 14028551
捐赠科研通 4417311
什么是DOI,文献DOI怎么找? 2426403
邀请新用户注册赠送积分活动 1419155
关于科研通互助平台的介绍 1397485