已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Impact of Pretension and Cycling Window on Degradation of Graphite/Silicon Composite Anodes

作者
Zhiwen Wan,Sravan Pannala,Hamidreza Movahedi,C.P.C. Wong,Charles E. Solbrig,Jason B. Siegel,Anna G. Stefanopoulou
出处
期刊:Meeting abstracts 卷期号:MA2024-01 (5): 713-713
标识
DOI:10.1149/ma2024-015713mtgabs
摘要

Challenges such as mechanical degradation and limited cycle life persist for high energy density lithium-ion batteries with silicon/graphite composite anodes. In this research work, the patterns of degradation of cells with silicon/graphite composite and NMC622 cathode are examined at varied cycling conditions and applied external pressure or pretension. The most notable outcome of this analysis is that cells cycled between 0 and 100 State-of-Charge (SoC) exhibit the most accelerated aging process. Increasing the pretension force effectively restrains the irreversible expansion of the cells, and has a positive effect on capacity retention. In this research, a comprehensive experiment was conducted involving 46 cells subjected to diverse cycling conditions, voltage windows, pretension forces, and temperatures. Reference performance tests (e.g. HPPC and 1/20 C-rate charge tests) are conducted regularly for analysis of degradation mechanisms. The capacity fade, resistance growth, and thickness increase are correspondingly shown in Figures 1, 2, and 3 with ampere hour throughput as the x-axis. The legend columns indicate test conditions, including C-rate, SoC window during cycling, temperature (in degrees Celsius), and pretension force (in psi). As is shown in all figures, there is a substantial dependence on the SoC window for cycling. To be specific, a rapid rate of capacity loss, resistance increase, and thickness increase occurs in the cell group cycled over the full SoC window (plotted in blue). Cells cycled under full SoC windows also exhibit an early accelerated fading (knee [1]) of capacity and accelerated increase (elbows [2]) of resistance and thickness. According to [3], this accelerated aging could be a consequence of side reactions and increased mechanical stress within the silicon particle when operating across a broad potential range. Meanwhile, for the cell group with restrained cycle windows (plotted in gray) the cells have not yet reached any knee, and have a relatively linear capacity loss. It should be noted that, within the range of partial cycling windows examined, cells subjected to a cycling range of 50-100 exhibit the most rapid degradation, which aligns with the conclusions presented in [4] due to the time at elevated potential. In Figure 2, the elevated temperature (depicted in red) exhibits a significant influence on the increase in resistance, potentially attributed to the growth of the solid electrolyte interface (SEI), but minimal impact on capacity loss. Maintaining other conditions constant and comparing cells under 25 psi and 15 psi (marked with hollow circles and filled circles, respectively), it is evident that a higher pretension force has a positive effect on cell capacity loss. Simultaneously, in Figure 3, the pretension force at 25 psi (marked with hollow circles) effectively restrains the irreversible expansion of the cells. The results are similar to the degradation pattern outlined in [5], it is observed that employing a high pretension force facilitates the mitigation of both degradation and expansion. As highlighted in [6], heightened temperatures lead to accelerated resistance growth. Nevertheless, the impact of various C-rates on degradation remains inconclusive [6]. This research systematically analyzed cell-level degradation through an extensive array of experiments, providing valuable insights into the intricate dynamics of capacity fade, resistance increase, and thickness growth. The study's revelation that the cycle window exerts a pronounced impact on battery health could offer crucial guidance for the design of Battery Management Systems (BMS). Moreover, the work establishes a foundational basis for future research, particularly in exploring electrode-level degradation patterns. These contributions collectively enhance the understanding of energy storage systems, offering practical implications for optimizing battery performance and longevity in various applications. [1]Attia, Peter M., et al. "“Knees” in lithium-ion battery aging trajectories." Journal of The Electrochemical Society 169.6 (2022): 060517. [2] Strange, Calum, et al. "Elbows of internal resistance rise curves in Li-ion cells." Energies 14.4 (2021): 1206. [3] Verbrugge, Mark, et al. "Fabrication and characterization of lithium-silicon thick-film electrodes for high-energy-density batteries." Journal of The Electrochemical Society 164.2 (2016): A156. [4] Xu, Bolun, et al. "Modeling of lithium-ion battery degradation for cell life assessment." IEEE Transactions on Smart Grid 9.2 (2016): 1131-1140. [5] Mohtat, Peyman, et al. "Reversible and irreversible expansion of lithium-ion batteries under a wide range of stress factors." Journal of The Electrochemical Society 168.10 (2021): 100520. [6] Pannala, Sravan, et al. "An Experimental Correlation of Degradation with Cell Reversible and Irreversible Expansion Measurement in Pouch Cells." Electrochemical Society Meeting Abstracts 243. No. 2. The Electrochemical Society, Inc., 2023. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优秀的山芙关注了科研通微信公众号
刚刚
1秒前
豆豆可发布了新的文献求助10
3秒前
Olivia发布了新的文献求助10
6秒前
可爱的函函应助langqi采纳,获得10
7秒前
10秒前
11秒前
Crystal完成签到 ,获得积分10
13秒前
Zlq发布了新的文献求助10
13秒前
15秒前
肖易应助幸福大白采纳,获得10
15秒前
zyq完成签到 ,获得积分10
16秒前
故城完成签到 ,获得积分10
16秒前
车灵寒发布了新的文献求助20
21秒前
脑洞疼应助Olivia采纳,获得30
21秒前
22秒前
wab完成签到,获得积分0
22秒前
弎夜发布了新的文献求助30
24秒前
忧心的网络完成签到,获得积分20
26秒前
不想干活应助幸福大白采纳,获得10
28秒前
不想干活应助幸福大白采纳,获得10
28秒前
万能图书馆应助幸福大白采纳,获得10
28秒前
领导范儿应助coollz采纳,获得10
29秒前
ccm应助科研通管家采纳,获得10
29秒前
深情安青应助科研通管家采纳,获得10
29秒前
丘比特应助科研通管家采纳,获得10
29秒前
丘比特应助科研通管家采纳,获得10
29秒前
小蘑菇应助科研通管家采纳,获得10
29秒前
小蘑菇应助科研通管家采纳,获得10
29秒前
爆米花应助科研通管家采纳,获得10
29秒前
30秒前
汉堡包应助科研三轮车采纳,获得10
34秒前
38秒前
Eliauk完成签到 ,获得积分10
42秒前
活泼尔烟发布了新的文献求助10
44秒前
47秒前
49秒前
赘婿应助车灵寒采纳,获得10
51秒前
51秒前
崔梦楠完成签到 ,获得积分10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610031
求助须知:如何正确求助?哪些是违规求助? 4016179
关于积分的说明 12434575
捐赠科研通 3697585
什么是DOI,文献DOI怎么找? 2038909
邀请新用户注册赠送积分活动 1071843
科研通“疑难数据库(出版商)”最低求助积分说明 955542