亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Impact of Pretension and Cycling Window on Degradation of Graphite/Silicon Composite Anodes

作者
Zhiwen Wan,Sravan Pannala,Hamidreza Movahedi,C.P.C. Wong,Charles E. Solbrig,Jason B. Siegel,Anna G. Stefanopoulou
出处
期刊:Meeting abstracts 卷期号:MA2024-01 (5): 713-713
标识
DOI:10.1149/ma2024-015713mtgabs
摘要

Challenges such as mechanical degradation and limited cycle life persist for high energy density lithium-ion batteries with silicon/graphite composite anodes. In this research work, the patterns of degradation of cells with silicon/graphite composite and NMC622 cathode are examined at varied cycling conditions and applied external pressure or pretension. The most notable outcome of this analysis is that cells cycled between 0 and 100 State-of-Charge (SoC) exhibit the most accelerated aging process. Increasing the pretension force effectively restrains the irreversible expansion of the cells, and has a positive effect on capacity retention. In this research, a comprehensive experiment was conducted involving 46 cells subjected to diverse cycling conditions, voltage windows, pretension forces, and temperatures. Reference performance tests (e.g. HPPC and 1/20 C-rate charge tests) are conducted regularly for analysis of degradation mechanisms. The capacity fade, resistance growth, and thickness increase are correspondingly shown in Figures 1, 2, and 3 with ampere hour throughput as the x-axis. The legend columns indicate test conditions, including C-rate, SoC window during cycling, temperature (in degrees Celsius), and pretension force (in psi). As is shown in all figures, there is a substantial dependence on the SoC window for cycling. To be specific, a rapid rate of capacity loss, resistance increase, and thickness increase occurs in the cell group cycled over the full SoC window (plotted in blue). Cells cycled under full SoC windows also exhibit an early accelerated fading (knee [1]) of capacity and accelerated increase (elbows [2]) of resistance and thickness. According to [3], this accelerated aging could be a consequence of side reactions and increased mechanical stress within the silicon particle when operating across a broad potential range. Meanwhile, for the cell group with restrained cycle windows (plotted in gray) the cells have not yet reached any knee, and have a relatively linear capacity loss. It should be noted that, within the range of partial cycling windows examined, cells subjected to a cycling range of 50-100 exhibit the most rapid degradation, which aligns with the conclusions presented in [4] due to the time at elevated potential. In Figure 2, the elevated temperature (depicted in red) exhibits a significant influence on the increase in resistance, potentially attributed to the growth of the solid electrolyte interface (SEI), but minimal impact on capacity loss. Maintaining other conditions constant and comparing cells under 25 psi and 15 psi (marked with hollow circles and filled circles, respectively), it is evident that a higher pretension force has a positive effect on cell capacity loss. Simultaneously, in Figure 3, the pretension force at 25 psi (marked with hollow circles) effectively restrains the irreversible expansion of the cells. The results are similar to the degradation pattern outlined in [5], it is observed that employing a high pretension force facilitates the mitigation of both degradation and expansion. As highlighted in [6], heightened temperatures lead to accelerated resistance growth. Nevertheless, the impact of various C-rates on degradation remains inconclusive [6]. This research systematically analyzed cell-level degradation through an extensive array of experiments, providing valuable insights into the intricate dynamics of capacity fade, resistance increase, and thickness growth. The study's revelation that the cycle window exerts a pronounced impact on battery health could offer crucial guidance for the design of Battery Management Systems (BMS). Moreover, the work establishes a foundational basis for future research, particularly in exploring electrode-level degradation patterns. These contributions collectively enhance the understanding of energy storage systems, offering practical implications for optimizing battery performance and longevity in various applications. [1]Attia, Peter M., et al. "“Knees” in lithium-ion battery aging trajectories." Journal of The Electrochemical Society 169.6 (2022): 060517. [2] Strange, Calum, et al. "Elbows of internal resistance rise curves in Li-ion cells." Energies 14.4 (2021): 1206. [3] Verbrugge, Mark, et al. "Fabrication and characterization of lithium-silicon thick-film electrodes for high-energy-density batteries." Journal of The Electrochemical Society 164.2 (2016): A156. [4] Xu, Bolun, et al. "Modeling of lithium-ion battery degradation for cell life assessment." IEEE Transactions on Smart Grid 9.2 (2016): 1131-1140. [5] Mohtat, Peyman, et al. "Reversible and irreversible expansion of lithium-ion batteries under a wide range of stress factors." Journal of The Electrochemical Society 168.10 (2021): 100520. [6] Pannala, Sravan, et al. "An Experimental Correlation of Degradation with Cell Reversible and Irreversible Expansion Measurement in Pouch Cells." Electrochemical Society Meeting Abstracts 243. No. 2. The Electrochemical Society, Inc., 2023. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
岁岁完成签到 ,获得积分10
28秒前
34秒前
Plum22发布了新的文献求助10
40秒前
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
cherlie应助Plum22采纳,获得20
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
丰富莹芝发布了新的文献求助10
2分钟前
2分钟前
糯糯发布了新的文献求助10
3分钟前
所所应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
喜悦幻灵完成签到 ,获得积分10
3分钟前
3分钟前
热心易绿完成签到 ,获得积分10
3分钟前
丰富莹芝完成签到,获得积分10
3分钟前
3分钟前
4分钟前
cherlie应助Plum22采纳,获得20
4分钟前
edisonyan完成签到 ,获得积分10
4分钟前
刘宇童发布了新的文献求助10
4分钟前
4分钟前
大个应助刘宇童采纳,获得10
4分钟前
小二郎应助xiongdi521采纳,获得10
4分钟前
4分钟前
xiongdi521发布了新的文献求助10
4分钟前
5分钟前
5分钟前
Ava应助吕易巧采纳,获得10
5分钟前
5分钟前
5分钟前
andrele发布了新的文献求助10
5分钟前
5分钟前
吕易巧发布了新的文献求助10
5分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990148
求助须知:如何正确求助?哪些是违规求助? 3532119
关于积分的说明 11256456
捐赠科研通 3271016
什么是DOI,文献DOI怎么找? 1805171
邀请新用户注册赠送积分活动 882288
科研通“疑难数据库(出版商)”最低求助积分说明 809228