Electrodeposition of Non-Noble High-Entropy Alloys for Effective Hydrogen Evolution Electrocatalysts

材料科学 高熵合金 化学工程 纳米技术 冶金 工程类 合金
作者
Zachary Liam Carroll,Michel J.R. Haché,Bowen Wang,Lixin Chen,U. Erb,Steven J. Thorpe,Yu Zou
出处
期刊:Meeting abstracts 卷期号:MA2024-01 (34): 1874-1874
标识
DOI:10.1149/ma2024-01341874mtgabs
摘要

As society works towards reducing its carbon footprint, various sectors such as energy, steelmaking and fertilizer production have begun to look increasingly towards decarbonization. Hydrogen production through electrolysis, when linked to renewables (solar, wind), provides a promising low-emission alternative as an energy carrier and chemical feedstock. With the decreasing cost of said renewables, greater focus is now on the capital cost of the electrolyser, and particularly the membrane/electrode structures. Conventional Proton Exchange Membrane (PEM) electrolysers rely on the use of electrocatalysts made with expensive noble metals such as platinum, ruthenium, and palladium [1]. Anion Exchange Membrane (AEM) electrolysers present an effective means of alkaline water splitting with low carbon emissions and can effectively utilize non-noble metal electrocatalysts for the Hydrogen Evolution Reaction (HER). A novel class of materials, High-Entropy Alloys (HEAs), made of non-noble metals or with reduced noble metal content have shown great promise as active electrocatalytic materials [2]. HEAs are typically defined as metal alloys made of five or more constituent elements each comprising at least 5% of the total material [3]. Having such a large number of principal alloying elements can lead to enhanced phase stability due to an increased configurational entropy, have unique chemical clustering, and can help prevent degradation of the material in harsh environments [2]. Additionally, the large lattice parameter mismatch between constituent elements can result in a high degree of strain which can help shift electronic states in a way that is favourable to hydrogen electrocatalysis [4]. These properties along with the so called “cocktail effect,” whereby combining multiple elements can result in unexpected synergistic interactions, makes HEAs uniquely suited to electrocatalytic applications [5]. In this work, we investigate the electrocatalytic performance of electrodeposited FeNiCoMoW HEAs. The goal is to combine three hyper-d transition metals with two hypo-d transition metals to alter the electronic structure and improve electrocatalytic performance. Using chronoamperometric measurements, the Tafel slopes for FeNiCoMoW HEAs electrodeposited at pH 5, 6 and 7 were determined, with the pH 5 HEA demonstrating the smallest average Tafel slope of approximately 83 mV/dec. Compared to some electrodeposited binary alloys reported on in the literature, this marks an improvement and may be the result of unexpected interactions within the compositionally complex alloy. In the FeNiCoMoW HEA, the magnitude of the Tafel slope increased in tandem with the electrochemically active surface area (ECSA) as determined by Cyclic Voltammetry (CV) which suggests that the composition may be more important for improving performance. As the pH of the electrodeposition solution increased, the amount of cobalt in the as-deposited HEA decreased while the amounts of molybdenum and tungsten remained constant. The composition of nickel and iron appeared to vary inversely, reaching a maximum and minimum respectively at pH 6. From these results it seems that maximizing cobalt content and minimizing nickel content could potentially help to improve HER performance in the FeNiCoMoW system. References: [1] J. Song et al. , “Implementation of Proton Exchange Membrane Water Electrolyzer with Ultralow Pt Loading Cathode through Pt Particle Size Control,” ACS Sustain. Chem. Eng. , vol. 11, no. 45, pp. 16258–16266, Nov. 2023, doi: 10.1021/acssuschemeng.3c04679. [2] G. M. Tomboc, T. Kwon, J. Joo, and K. Lee, “High entropy alloy electrocatalysts: a critical assessment of fabrication and performance,” J. Mater. Chem. A , vol. 8, no. 30, pp. 14844–14862, Aug. 2020, doi: 10.1039/D0TA05176D. [3] J.-W. Yeh et al. , “Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes,” Adv. Eng. Mater. , vol. 6, no. 5, pp. 299–303, 2004, doi: 10.1002/adem.200300567. [4] T. Löffler et al. , “Toward a Paradigm Shift in Electrocatalysis Using Complex Solid Solution Nanoparticles,” ACS Energy Lett. , vol. 4, no. 5, pp. 1206–1214, May 2019, doi: 10.1021/acsenergylett.9b00531. [5] Y. Zhang, D. Wang, and S. Wang, “High-Entropy Alloys for Electrocatalysis: Design, Characterization, and Applications,” Small , vol. 18, no. 7, p. 2104339, 2022, doi: 10.1002/smll.202104339. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研小白发布了新的文献求助20
2秒前
Lucas应助开心的火龙果采纳,获得10
2秒前
2秒前
窗外风雨阑珊完成签到,获得积分10
2秒前
许子发布了新的文献求助10
2秒前
3秒前
新羽发布了新的文献求助10
4秒前
Yeats完成签到,获得积分20
5秒前
威武青亦发布了新的文献求助10
6秒前
隐形曼青应助NYM采纳,获得10
6秒前
的的完成签到 ,获得积分10
6秒前
aaaaaa发布了新的文献求助10
6秒前
123发布了新的文献求助10
7秒前
kytyx完成签到,获得积分20
7秒前
大喜子给大喜子的求助进行了留言
7秒前
丘比特应助Hzyyyyyyyyy采纳,获得10
7秒前
7秒前
李健的小迷弟应助孜火采纳,获得10
8秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
10秒前
12秒前
12秒前
韦觅松发布了新的文献求助10
12秒前
愤怒的乐松应助aaaaaa采纳,获得20
12秒前
WUHUDASM发布了新的文献求助10
12秒前
cocolu应助袁宁宁静采纳,获得20
13秒前
FashionBoy应助倚阁楼灬昊采纳,获得10
14秒前
kytyx发布了新的文献求助10
14秒前
15秒前
bkagyin应助袁华采纳,获得10
15秒前
情怀应助xiao采纳,获得10
15秒前
舒服的鱼完成签到 ,获得积分10
15秒前
16秒前
fz发布了新的文献求助10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470540
求助须知:如何正确求助?哪些是违规求助? 3063510
关于积分的说明 9083726
捐赠科研通 2753934
什么是DOI,文献DOI怎么找? 1511152
邀请新用户注册赠送积分活动 698303
科研通“疑难数据库(出版商)”最低求助积分说明 698178