Dual-consistency guidance semi-supervised medical image segmentation with low-level detail feature augmentation

人工智能 特征(语言学) 计算机科学 一致性(知识库) 分割 模式识别(心理学) 图像分割 计算机视觉 对偶(语法数字) 艺术 哲学 语言学 文学类
作者
Bing Wang,Mengyi Ju,Xin Zhang,Ying Yang,Xuedong Tian
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:181: 109046-109046
标识
DOI:10.1016/j.compbiomed.2024.109046
摘要

In deep-learning-based medical image segmentation tasks, semi-supervised learning can greatly reduce the dependence of the model on labeled data. However, existing semi-supervised medical image segmentation methods face the challenges of object boundary ambiguity and a small amount of available data, which limit the application of segmentation models in clinical practice. To solve these problems, we propose a novel semi-supervised medical image segmentation network based on dual-consistency guidance, which can extract reliable semantic information from unlabeled data over a large spatial and dimensional range in a simple and effective manner. This serves to improve the contribution of unlabeled data to the model accuracy. Specifically, we construct a split weak and strong consistency constraint strategy to capture data-level and feature-level consistencies from unlabeled data to improve the learning efficiency of the model. Furthermore, we design a simple multi-scale low-level detail feature enhancement module to improve the extraction of low-level detail contextual information, which is crucial to accurately locate object contours and avoid omitting small objects in semi-supervised medical image dense prediction tasks. Quantitative and qualitative evaluations on six challenging datasets demonstrate that our model outperforms other semi-supervised segmentation models in terms of segmentation accuracy and presents advantages in terms of generalizability. Code is available at https://github.com/0Jmyy0/SSMIS-DC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
久久完成签到,获得积分10
1秒前
1秒前
就喝一口果汁完成签到,获得积分10
1秒前
unicornfly完成签到,获得积分10
1秒前
852应助vikiluo采纳,获得10
2秒前
2秒前
2秒前
zhenzhen完成签到,获得积分10
2秒前
3秒前
3秒前
桃桃发布了新的文献求助10
4秒前
小虫发布了新的文献求助10
5秒前
5秒前
与其奈何发布了新的文献求助10
5秒前
乐乐应助贝贝采纳,获得10
6秒前
充电宝应助溫蒂采纳,获得10
6秒前
思源应助acceleactor采纳,获得10
6秒前
我是老大应助羊觅夏采纳,获得30
7秒前
7秒前
transition发布了新的文献求助10
7秒前
Darker发布了新的文献求助10
7秒前
馒头完成签到 ,获得积分10
7秒前
277应助xuhang采纳,获得10
8秒前
废寝忘食完成签到,获得积分10
8秒前
8秒前
SPRETEND发布了新的文献求助10
9秒前
sherrt完成签到,获得积分10
9秒前
9秒前
丰知然应助MY采纳,获得10
9秒前
乐乐应助super采纳,获得10
10秒前
羊觅夏完成签到,获得积分10
10秒前
342396102发布了新的文献求助10
10秒前
烟花应助实验狗采纳,获得10
10秒前
可靠幼旋应助复杂不二采纳,获得10
11秒前
Owen应助zls采纳,获得10
12秒前
12秒前
俏皮的采波完成签到,获得积分10
13秒前
酷波er应助sherrt采纳,获得80
13秒前
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3301341
求助须知:如何正确求助?哪些是违规求助? 2936061
关于积分的说明 8475819
捐赠科研通 2609853
什么是DOI,文献DOI怎么找? 1424856
科研通“疑难数据库(出版商)”最低求助积分说明 662191
邀请新用户注册赠送积分活动 646202