A deep-learning-based surrogate model for Monte-Carlo simulations of the linear energy transfer in primary brain tumor patients treated with proton-beam radiotherapy

蒙特卡罗方法 线性能量转移 质子 梁(结构) 脑瘤 能量(信号处理) 能量转移 光束能量 放射治疗 计算机科学 物理 统计物理学 辐射 核物理学 医学 数学 光学 放射科 工程物理 统计 病理 量子力学
作者
Sebastian Starke,A. Kieslich,Martina Palkowitsch,Fabian Hennings,Esther G.C. Troost,Mechthild Krause,Jona Bensberg,Christian Hahn,Feline Heinzelmann,Christian Bäumer,Armin Lühr,Beate Timmermann,Steffen Löck
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:69 (16): 165034-165034
标识
DOI:10.1088/1361-6560/ad64b7
摘要

Abstract Objective. This study explores the use of neural networks (NNs) as surrogate models for Monte-Carlo (MC) simulations in predicting the dose-averaged linear energy transfer (LET d ) of protons in proton-beam therapy based on the planned dose distribution and patient anatomy in the form of computed tomography (CT) images. As LET d is associated with variability in the relative biological effectiveness (RBE) of protons, we also evaluate the implications of using NN predictions for normal tissue complication probability (NTCP) models within a variable-RBE context. Approach. The predictive performance of three-dimensional NN architectures was evaluated using five-fold cross-validation on a cohort of brain tumor patients ( n = 151). The best-performing model was identified and externally validated on patients from a different center ( n = 107). LET d predictions were compared to MC-simulated results in clinically relevant regions of interest. We assessed the impact on NTCP models by leveraging LET d predictions to derive RBE-weighted doses, using the Wedenberg RBE model. Main results. We found NNs based solely on the planned dose distribution, i.e. without additional usage of CT images, can approximate MC-based LET d distributions. Root mean squared errors (RMSE) for the median LET d within the brain, brainstem, CTV, chiasm, lacrimal glands (ipsilateral/contralateral) and optic nerves (ipsilateral/contralateral) were 0.36, 0.87, 0.31, 0.73, 0.68, 1.04, 0.69 and 1.24 keV µ m −1 , respectively. Although model predictions showed statistically significant differences from MC outputs, these did not result in substantial changes in NTCP predictions, with RMSEs of at most 3.2 percentage points. Significance. The ability of NNs to predict LET d based solely on planned dose distributions suggests a viable alternative to compute-intensive MC simulations in a variable-RBE setting. This is particularly useful in scenarios where MC simulation data are unavailable, facilitating resource-constrained proton therapy treatment planning, retrospective patient data analysis and further investigations on the variability of proton RBE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hui发布了新的文献求助10
刚刚
1秒前
默默板凳发布了新的文献求助10
2秒前
shl发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
cc完成签到,获得积分10
3秒前
舒心疾发布了新的文献求助10
4秒前
勤奋的凌翠完成签到 ,获得积分10
4秒前
好运滚滚来完成签到,获得积分10
4秒前
orixero应助谷雨秋采纳,获得10
4秒前
5秒前
5秒前
aa发布了新的文献求助10
5秒前
CX完成签到 ,获得积分10
6秒前
领导范儿应助乐君采纳,获得10
6秒前
Louisa发布了新的文献求助10
8秒前
9秒前
哭泣秋蝶发布了新的文献求助10
10秒前
香蕉觅云应助绿豆炒青椒采纳,获得10
10秒前
11秒前
乐乐应助shl采纳,获得10
12秒前
14秒前
14秒前
司空豁发布了新的文献求助10
15秒前
16秒前
哒哒猪发布了新的文献求助10
18秒前
20秒前
乐乐应助ccdk2025采纳,获得10
20秒前
20秒前
完美世界应助聪明硬币采纳,获得10
21秒前
ding应助路途中追逐采纳,获得10
22秒前
24秒前
24秒前
kk发布了新的文献求助10
25秒前
默默板凳完成签到,获得积分10
25秒前
散步的刺猬完成签到,获得积分10
26秒前
26秒前
21发布了新的文献求助10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3569704
求助须知:如何正确求助?哪些是违规求助? 3140855
关于积分的说明 9439920
捐赠科研通 2842048
什么是DOI,文献DOI怎么找? 1562021
邀请新用户注册赠送积分活动 730837
科研通“疑难数据库(出版商)”最低求助积分说明 718237