分割
图像分割
计算机视觉
人工智能
注释
计算机科学
领域(数学分析)
数学
数学分析
作者
X Z Li,Xi Ouyang,Jiadong Zhang,Zhongxiang Ding,Yuyao Zhang,Zhong Xue,Feng Shi,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 1-1
被引量:1
标识
DOI:10.1109/tmi.2024.3424884
摘要
Medical image analysis poses significant challenges due to limited availability of clinical data, which is crucial for training accurate models. This limitation is further compounded by the specialized and labor-intensive nature of the data annotation process. For example, despite the popularity of computed tomography angiography (CTA) in diagnosing atherosclerosis with an abundance of annotated datasets, magnetic resonance (MR) images stand out with better visualization for soft plaque and vessel wall characterization. However, the higher cost and limited accessibility of MR, as well as time-consuming nature of manual labeling, contribute to fewer annotated datasets. To address these issues, we formulate a multi-modal transfer learning network, named MT-Net, designed to learn from unpaired CTA and sparsely-annotated MR data. Additionally, we harness the Segment Anything Model (SAM) to synthesize additional MR annotations, enriching the training process. Specifically, our method first segments vessel lumen regions followed by precise characterization of carotid artery vessel walls, thereby ensuring both segmentation accuracy and clinical relevance. Validation of our method involved rigorous experimentation on publicly available datasets from COSMOS and CARE-II challenge, demonstrating its superior performance compared to existing state-of-the-art techniques.
科研通智能强力驱动
Strongly Powered by AbleSci AI