Combining metabolomics and machine learning to discover biomarkers for early-stage breast cancer diagnosis

代谢组学 乳腺癌 生物标志物发现 癌症 生物标志物 脂类学 医学 乳腺摄影术 脂质体 生物信息学 癌症生物标志物 计算生物学 生物 内科学 蛋白质组学 生物化学 基因
作者
Nguyen Ky Anh,Anbok Lee,Nguyen Ky Phat,Nguyen Thi Hai Yen,Nguyen Quang Thu,Nguyen Tran Nam Tien,Ho-Sook Kim,Tae Hyun Kim,Dong‐Hyun Kim,Hee Yeon Kim,Nguyen Phuoc Long
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (10): e0311810-e0311810
标识
DOI:10.1371/journal.pone.0311810
摘要

There is an urgent need for better biomarkers for the detection of early-stage breast cancer. Utilizing untargeted metabolomics and lipidomics in conjunction with advanced data mining approaches for metabolism-centric biomarker discovery and validation may enhance the identification and validation of novel biomarkers for breast cancer screening. In this study, we employed a multimodal omics approach to identify and validate potential biomarkers capable of differentiating between patients with breast cancer and those with benign tumors. Our findings indicated that ether-linked phosphatidylcholine exhibited a significant difference between invasive ductal carcinoma and benign tumors, including cases with inconsistent mammography results. We observed alterations in numerous lipid species, including sphingomyelin, triacylglycerol, and free fatty acids, in the breast cancer group. Furthermore, we identified several dysregulated hydrophilic metabolites in breast cancer, such as glutamate, glycochenodeoxycholate, and dimethyluric acid. Through robust multivariate receiver operating characteristic analysis utilizing machine learning models, either linear support vector machines or random forest models, we successfully distinguished between cancerous and benign cases with promising outcomes. These results emphasize the potential of metabolic biomarkers to complement other criteria in breast cancer screening. Future studies are essential to further validate the metabolic biomarkers identified in our study and to develop assays for clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
water应助知名不具采纳,获得10
刚刚
华仔应助知名不具采纳,获得10
刚刚
刚刚
1秒前
大个应助kyJYbs采纳,获得10
1秒前
紧张的书本完成签到,获得积分20
2秒前
文安完成签到,获得积分10
2秒前
2秒前
哦哦哦完成签到,获得积分20
3秒前
刚睡醒发布了新的文献求助10
3秒前
汪丽娜完成签到,获得积分10
3秒前
cheers完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
5秒前
kreys发布了新的文献求助20
5秒前
5秒前
5秒前
5秒前
6秒前
鸦紗完成签到,获得积分20
6秒前
6秒前
now发布了新的文献求助10
6秒前
6秒前
大模型应助LY采纳,获得10
7秒前
xing完成签到 ,获得积分10
7秒前
7秒前
jjhh完成签到,获得积分20
8秒前
田様应助刘波采纳,获得10
9秒前
满满啊发布了新的文献求助10
9秒前
Akim应助皮老师采纳,获得10
10秒前
xiao xu发布了新的文献求助10
10秒前
wudi19887发布了新的文献求助30
10秒前
10秒前
11秒前
11秒前
samuel完成签到,获得积分10
11秒前
sushx完成签到,获得积分10
11秒前
迅速雨琴发布了新的文献求助10
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979440
求助须知:如何正确求助?哪些是违规求助? 3523402
关于积分的说明 11217322
捐赠科研通 3260886
什么是DOI,文献DOI怎么找? 1800231
邀请新用户注册赠送积分活动 878983
科研通“疑难数据库(出版商)”最低求助积分说明 807126