Combining metabolomics and machine learning to discover biomarkers for early-stage breast cancer diagnosis

代谢组学 乳腺癌 生物标志物发现 癌症 生物标志物 脂类学 医学 乳腺摄影术 脂质体 生物信息学 癌症生物标志物 计算生物学 生物 内科学 蛋白质组学 生物化学 基因
作者
Nguyen Ky Anh,Anbok Lee,Nguyen Ky Phat,Nguyen Thi Hai Yen,Nguyen Quang Thu,Nguyen Tran Nam Tien,Ho-Sook Kim,Tae Hyun Kim,Dong‐Hyun Kim,Hee Yeon Kim,Nguyen Phuoc Long
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (10): e0311810-e0311810 被引量:10
标识
DOI:10.1371/journal.pone.0311810
摘要

There is an urgent need for better biomarkers for the detection of early-stage breast cancer. Utilizing untargeted metabolomics and lipidomics in conjunction with advanced data mining approaches for metabolism-centric biomarker discovery and validation may enhance the identification and validation of novel biomarkers for breast cancer screening. In this study, we employed a multimodal omics approach to identify and validate potential biomarkers capable of differentiating between patients with breast cancer and those with benign tumors. Our findings indicated that ether-linked phosphatidylcholine exhibited a significant difference between invasive ductal carcinoma and benign tumors, including cases with inconsistent mammography results. We observed alterations in numerous lipid species, including sphingomyelin, triacylglycerol, and free fatty acids, in the breast cancer group. Furthermore, we identified several dysregulated hydrophilic metabolites in breast cancer, such as glutamate, glycochenodeoxycholate, and dimethyluric acid. Through robust multivariate receiver operating characteristic analysis utilizing machine learning models, either linear support vector machines or random forest models, we successfully distinguished between cancerous and benign cases with promising outcomes. These results emphasize the potential of metabolic biomarkers to complement other criteria in breast cancer screening. Future studies are essential to further validate the metabolic biomarkers identified in our study and to develop assays for clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖的蓝天完成签到,获得积分10
刚刚
布丁完成签到,获得积分10
刚刚
长情的千风完成签到,获得积分10
1秒前
qs完成签到,获得积分10
3秒前
YG完成签到,获得积分10
3秒前
4秒前
领导范儿应助焦糖采纳,获得30
4秒前
5秒前
6秒前
哈基米德应助luo采纳,获得20
7秒前
7秒前
7秒前
夏渃浠完成签到,获得积分10
8秒前
英俊的铭应助宓人英采纳,获得10
8秒前
orixero应助jjh采纳,获得10
8秒前
小叶发布了新的文献求助10
9秒前
完美世界应助kiuikiu采纳,获得10
10秒前
viciz发布了新的文献求助10
10秒前
bo完成签到,获得积分10
10秒前
胡十一完成签到,获得积分20
11秒前
11秒前
11秒前
小鱼发布了新的文献求助10
11秒前
12秒前
嘻嘻哈哈应助啥也不会采纳,获得10
13秒前
14秒前
15秒前
吴鹏飞发布了新的文献求助10
15秒前
JJ完成签到,获得积分10
15秒前
16秒前
纯真外套完成签到,获得积分20
17秒前
Cleo应助太阳采纳,获得10
17秒前
天天快乐应助苻千愁采纳,获得10
18秒前
龙龙龙发布了新的文献求助10
19秒前
BowieHuang应助澳大利亚采纳,获得10
20秒前
高博士想退休完成签到 ,获得积分10
20秒前
舫舟游太湖完成签到,获得积分20
21秒前
猫猫关注了科研通微信公众号
22秒前
22秒前
挖井的人发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259010
求助须知:如何正确求助?哪些是违规求助? 4420845
关于积分的说明 13761269
捐赠科研通 4294626
什么是DOI,文献DOI怎么找? 2356495
邀请新用户注册赠送积分活动 1352874
关于科研通互助平台的介绍 1313784