Combining metabolomics and machine learning to discover biomarkers for early-stage breast cancer diagnosis

代谢组学 乳腺癌 生物标志物发现 癌症 生物标志物 脂类学 医学 乳腺摄影术 脂质体 生物信息学 癌症生物标志物 计算生物学 生物 内科学 蛋白质组学 生物化学 基因
作者
Nguyen Ky Anh,Anbok Lee,Nguyen Ky Phat,Nguyen Thi Hai Yen,Nguyen Quang Thu,Nguyen Tran Nam Tien,Ho-Sook Kim,Tae Hyun Kim,Dong‐Hyun Kim,Hee Yeon Kim,Nguyen Phuoc Long
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (10): e0311810-e0311810 被引量:10
标识
DOI:10.1371/journal.pone.0311810
摘要

There is an urgent need for better biomarkers for the detection of early-stage breast cancer. Utilizing untargeted metabolomics and lipidomics in conjunction with advanced data mining approaches for metabolism-centric biomarker discovery and validation may enhance the identification and validation of novel biomarkers for breast cancer screening. In this study, we employed a multimodal omics approach to identify and validate potential biomarkers capable of differentiating between patients with breast cancer and those with benign tumors. Our findings indicated that ether-linked phosphatidylcholine exhibited a significant difference between invasive ductal carcinoma and benign tumors, including cases with inconsistent mammography results. We observed alterations in numerous lipid species, including sphingomyelin, triacylglycerol, and free fatty acids, in the breast cancer group. Furthermore, we identified several dysregulated hydrophilic metabolites in breast cancer, such as glutamate, glycochenodeoxycholate, and dimethyluric acid. Through robust multivariate receiver operating characteristic analysis utilizing machine learning models, either linear support vector machines or random forest models, we successfully distinguished between cancerous and benign cases with promising outcomes. These results emphasize the potential of metabolic biomarkers to complement other criteria in breast cancer screening. Future studies are essential to further validate the metabolic biomarkers identified in our study and to develop assays for clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助机灵的无极采纳,获得10
1秒前
czy发布了新的文献求助10
1秒前
ZhaoRongzhe发布了新的文献求助10
1秒前
breeze发布了新的文献求助10
1秒前
zhang发布了新的文献求助10
1秒前
皮卡皮卡完成签到,获得积分10
2秒前
浪花发布了新的文献求助10
2秒前
Doctor完成签到,获得积分10
2秒前
2秒前
纯情的馒头完成签到,获得积分10
2秒前
goldkoi发布了新的文献求助10
5秒前
大模型应助苟文锋采纳,获得10
6秒前
6秒前
GG发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
传奇3应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
9秒前
大模型应助科研通管家采纳,获得10
9秒前
机灵班应助舒服的飞丹采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
cc发布了新的文献求助10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得20
9秒前
Hello应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
xxfsx应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297710
求助须知:如何正确求助?哪些是违规求助? 4446487
关于积分的说明 13839691
捐赠科研通 4331653
什么是DOI,文献DOI怎么找? 2377824
邀请新用户注册赠送积分活动 1373105
关于科研通互助平台的介绍 1338650