Combining metabolomics and machine learning to discover biomarkers for early-stage breast cancer diagnosis

代谢组学 乳腺癌 生物标志物发现 癌症 生物标志物 脂类学 医学 乳腺摄影术 脂质体 生物信息学 癌症生物标志物 计算生物学 生物 内科学 蛋白质组学 基因 生物化学
作者
Nguyen Ky Anh,Anbok Lee,Nguyen Ky Phat,Nguyen Thi Hai Yen,Nguyen Quang Thu,Nguyen Tran Nam Tien,Ho-Sook Kim,Tae Hyun Kim,Dong‐Hyun Kim,Hee Yeon Kim,Nguyen Phuoc Long
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (10): e0311810-e0311810
标识
DOI:10.1371/journal.pone.0311810
摘要

There is an urgent need for better biomarkers for the detection of early-stage breast cancer. Utilizing untargeted metabolomics and lipidomics in conjunction with advanced data mining approaches for metabolism-centric biomarker discovery and validation may enhance the identification and validation of novel biomarkers for breast cancer screening. In this study, we employed a multimodal omics approach to identify and validate potential biomarkers capable of differentiating between patients with breast cancer and those with benign tumors. Our findings indicated that ether-linked phosphatidylcholine exhibited a significant difference between invasive ductal carcinoma and benign tumors, including cases with inconsistent mammography results. We observed alterations in numerous lipid species, including sphingomyelin, triacylglycerol, and free fatty acids, in the breast cancer group. Furthermore, we identified several dysregulated hydrophilic metabolites in breast cancer, such as glutamate, glycochenodeoxycholate, and dimethyluric acid. Through robust multivariate receiver operating characteristic analysis utilizing machine learning models, either linear support vector machines or random forest models, we successfully distinguished between cancerous and benign cases with promising outcomes. These results emphasize the potential of metabolic biomarkers to complement other criteria in breast cancer screening. Future studies are essential to further validate the metabolic biomarkers identified in our study and to develop assays for clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王小帅ok发布了新的文献求助10
刚刚
Sandy完成签到,获得积分10
1秒前
SciGPT应助小张采纳,获得10
1秒前
2秒前
pzh发布了新的文献求助10
2秒前
2秒前
迟梦琪发布了新的文献求助10
2秒前
艾科研发布了新的文献求助10
3秒前
CCR发布了新的文献求助10
3秒前
科研通AI6应助yanziwu94采纳,获得10
3秒前
3秒前
3秒前
顺心紫翠完成签到,获得积分10
4秒前
4秒前
ding应助Frose采纳,获得10
4秒前
科研通AI5应助西瓜采纳,获得10
4秒前
SciGPT应助Ccc采纳,获得10
5秒前
香蕉觅云应助Saya采纳,获得10
5秒前
昏睡的半莲完成签到,获得积分10
5秒前
英俊的铭应助大宝君采纳,获得20
5秒前
1101592875发布了新的文献求助10
6秒前
欢呼的初彤完成签到 ,获得积分10
6秒前
6秒前
6秒前
6秒前
婷婷完成签到,获得积分10
7秒前
7秒前
JamesPei应助李金文采纳,获得10
8秒前
打打应助平常的纸飞机采纳,获得10
8秒前
体贴代容完成签到,获得积分10
8秒前
CodeCraft应助拉萌采纳,获得10
9秒前
希望天下0贩的0应助ww采纳,获得10
9秒前
ShinEe发布了新的文献求助10
9秒前
慕青应助YRX采纳,获得10
10秒前
希望天下0贩的0应助一二采纳,获得10
10秒前
10秒前
无情依霜完成签到,获得积分10
10秒前
梦中有琦发布了新的文献求助10
10秒前
人沐发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576191
求助须知:如何正确求助?哪些是违规求助? 3995491
关于积分的说明 12369060
捐赠科研通 3669468
什么是DOI,文献DOI怎么找? 2022229
邀请新用户注册赠送积分活动 1056224
科研通“疑难数据库(出版商)”最低求助积分说明 943543