Combining metabolomics and machine learning to discover biomarkers for early-stage breast cancer diagnosis

代谢组学 乳腺癌 生物标志物发现 癌症 生物标志物 脂类学 医学 乳腺摄影术 脂质体 生物信息学 癌症生物标志物 计算生物学 生物 内科学 蛋白质组学 生物化学 基因
作者
Nguyen Ky Anh,Anbok Lee,Nguyen Ky Phat,Nguyen Thi Hai Yen,Nguyen Quang Thu,Nguyen Tran Nam Tien,Ho-Sook Kim,Tae Hyun Kim,Dong‐Hyun Kim,Hee Yeon Kim,Nguyen Phuoc Long
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (10): e0311810-e0311810 被引量:10
标识
DOI:10.1371/journal.pone.0311810
摘要

There is an urgent need for better biomarkers for the detection of early-stage breast cancer. Utilizing untargeted metabolomics and lipidomics in conjunction with advanced data mining approaches for metabolism-centric biomarker discovery and validation may enhance the identification and validation of novel biomarkers for breast cancer screening. In this study, we employed a multimodal omics approach to identify and validate potential biomarkers capable of differentiating between patients with breast cancer and those with benign tumors. Our findings indicated that ether-linked phosphatidylcholine exhibited a significant difference between invasive ductal carcinoma and benign tumors, including cases with inconsistent mammography results. We observed alterations in numerous lipid species, including sphingomyelin, triacylglycerol, and free fatty acids, in the breast cancer group. Furthermore, we identified several dysregulated hydrophilic metabolites in breast cancer, such as glutamate, glycochenodeoxycholate, and dimethyluric acid. Through robust multivariate receiver operating characteristic analysis utilizing machine learning models, either linear support vector machines or random forest models, we successfully distinguished between cancerous and benign cases with promising outcomes. These results emphasize the potential of metabolic biomarkers to complement other criteria in breast cancer screening. Future studies are essential to further validate the metabolic biomarkers identified in our study and to develop assays for clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
太空工程师完成签到,获得积分10
刚刚
dery发布了新的文献求助10
1秒前
隐形曼青应助zijia采纳,获得30
1秒前
2秒前
2秒前
2秒前
yuqin完成签到,获得积分10
2秒前
2秒前
科目三应助高兴象采纳,获得10
3秒前
xiha西希完成签到,获得积分10
4秒前
agog发布了新的文献求助10
4秒前
、、、完成签到,获得积分10
4秒前
热心破茧发布了新的文献求助10
6秒前
不接组会发布了新的文献求助10
6秒前
GC_AIBio发布了新的文献求助10
6秒前
Jiygua完成签到,获得积分10
7秒前
8秒前
852应助自信安荷采纳,获得10
8秒前
峥嵘发布了新的文献求助10
9秒前
千山发布了新的文献求助10
9秒前
wangchaofk完成签到,获得积分10
10秒前
涂上小张完成签到,获得积分10
10秒前
隐形霸完成签到,获得积分10
11秒前
李健的粉丝团团长应助dery采纳,获得10
11秒前
11秒前
研友_VZG7GZ应助F_echo采纳,获得30
11秒前
昌升发布了新的文献求助10
12秒前
丘比特应助dongsheng采纳,获得10
12秒前
清新王老吉完成签到,获得积分10
13秒前
胡小溪完成签到,获得积分10
13秒前
GC_AIBio完成签到,获得积分10
14秒前
善学以致用应助maomao采纳,获得10
15秒前
踏实的念柏完成签到,获得积分10
16秒前
SZU_Julian完成签到,获得积分10
16秒前
18秒前
Wzebrafish完成签到,获得积分10
18秒前
思源应助thinking采纳,获得10
19秒前
田様应助不学而无术采纳,获得50
19秒前
Reeee完成签到 ,获得积分10
19秒前
syt完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5177058
求助须知:如何正确求助?哪些是违规求助? 4365829
关于积分的说明 13593355
捐赠科研通 4215842
什么是DOI,文献DOI怎么找? 2312284
邀请新用户注册赠送积分活动 1311047
关于科研通互助平台的介绍 1259242