Combining metabolomics and machine learning to discover biomarkers for early-stage breast cancer diagnosis

代谢组学 乳腺癌 生物标志物发现 癌症 生物标志物 脂类学 医学 乳腺摄影术 脂质体 生物信息学 癌症生物标志物 计算生物学 生物 内科学 蛋白质组学 基因 生物化学
作者
Nguyen Ky Anh,Anbok Lee,Nguyen Ky Phat,Nguyen Thi Hai Yen,Nguyen Quang Thu,Nguyen Tran Nam Tien,Ho-Sook Kim,Tae Hyun Kim,Dong‐Hyun Kim,Hee Yeon Kim,Nguyen Phuoc Long
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (10): e0311810-e0311810
标识
DOI:10.1371/journal.pone.0311810
摘要

There is an urgent need for better biomarkers for the detection of early-stage breast cancer. Utilizing untargeted metabolomics and lipidomics in conjunction with advanced data mining approaches for metabolism-centric biomarker discovery and validation may enhance the identification and validation of novel biomarkers for breast cancer screening. In this study, we employed a multimodal omics approach to identify and validate potential biomarkers capable of differentiating between patients with breast cancer and those with benign tumors. Our findings indicated that ether-linked phosphatidylcholine exhibited a significant difference between invasive ductal carcinoma and benign tumors, including cases with inconsistent mammography results. We observed alterations in numerous lipid species, including sphingomyelin, triacylglycerol, and free fatty acids, in the breast cancer group. Furthermore, we identified several dysregulated hydrophilic metabolites in breast cancer, such as glutamate, glycochenodeoxycholate, and dimethyluric acid. Through robust multivariate receiver operating characteristic analysis utilizing machine learning models, either linear support vector machines or random forest models, we successfully distinguished between cancerous and benign cases with promising outcomes. These results emphasize the potential of metabolic biomarkers to complement other criteria in breast cancer screening. Future studies are essential to further validate the metabolic biomarkers identified in our study and to develop assays for clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助科研通管家采纳,获得10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
刚刚
lch23560应助科研通管家采纳,获得50
刚刚
Jason发布了新的文献求助10
刚刚
今后应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
大模型应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得30
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
1秒前
77发布了新的文献求助30
2秒前
淡定沧海发布了新的文献求助10
3秒前
msl2023发布了新的文献求助10
3秒前
4秒前
4秒前
HC发布了新的文献求助10
4秒前
CodeCraft应助迷了路的猫采纳,获得10
5秒前
HotnessK发布了新的文献求助30
6秒前
七个丸子完成签到,获得积分10
6秒前
CodeCraft应助Aspirin采纳,获得10
6秒前
6秒前
赶路人完成签到,获得积分20
7秒前
嘟嘟嘟嘟关注了科研通微信公众号
7秒前
8秒前
香蕉觅云应助Geo_new采纳,获得10
8秒前
zf2023完成签到,获得积分10
9秒前
11秒前
HC完成签到,获得积分10
11秒前
打打应助阿昌2021采纳,获得10
11秒前
在水一方应助AteeqBaloch采纳,获得10
12秒前
WYJ完成签到 ,获得积分10
12秒前
王王发布了新的文献求助10
12秒前
淡定沧海完成签到,获得积分10
12秒前
星辰大海应助义气的妙松采纳,获得10
12秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129618
求助须知:如何正确求助?哪些是违规求助? 2780387
关于积分的说明 7747813
捐赠科研通 2435722
什么是DOI,文献DOI怎么找? 1294230
科研通“疑难数据库(出版商)”最低求助积分说明 623601
版权声明 600570