Optimizing the n-type carrier concentration of an InVO4 photocatalyst by codoping with donors and intrinsic defects

纸卷 计算机科学 类型(生物学) 算法 生物 神学 哲学 生态学
作者
Aodi Zhang,Hang Li,Hongbin Xu,Baoying Dou,Genqiang Zhang,Wentao Wang
出处
期刊:Physical review applied [American Physical Society]
卷期号:22 (4) 被引量:4
标识
DOI:10.1103/physrevapplied.22.044047
摘要

Although indium vanadate (${\mathrm{InVO}}_{4}$) is an excellent n-type semiconductor, a controlled n-type carrier concentration of the ${\mathrm{InVO}}_{4}$ photocatalyst is required to enhance its photocatalytic activity. This study systematically explores the self-consistent Fermi energies, dominant intrinsic defects, electron concentration (${n}_{0}$), and defect concentration of ${\mathrm{InVO}}_{4}$ using density-functional theory coupled with detailed thermodynamic equilibrium simulations. The results indicate that the ${\mathrm{V}}_{\mathrm{In}}$ antisite defect (the vanadium atom replacing the indium atom) is the dominant intrinsic defect in ${\mathrm{InVO}}_{4}$. The calculated Fermi energy pinning position indicates that ${\mathrm{InVO}}_{4}$ has n-type doping behavior from intrinsic defects under $\mathrm{O}$-poor growth conditions, consistent with the experiments. Interestingly, donor (${D}^{+}$) doping is positive for improving the ${n}_{0}$ of the intrinsic-defect-doped ${\mathrm{InVO}}_{4}$. Therefore, at 300 K, a broad optimized chemical potential region (OCPR) is obtained for ${\mathrm{InVO}}_{4}$ codoped with donors and intrinsic defects. In this OCPR, the ${n}_{0}$ is higher, without recombination centers and significant compensation, significantly enhancing the photocatalytic activity of ${\mathrm{InVO}}_{4}$. However, for the case of growth temperature at 873 K and after quenching from 873 to 300 K, the OCPR is much narrower than that at 300 K, indicating that higher temperatures may adversely affect the OCPR. Our results provide deep insights into defect behaviors in ${\mathrm{InVO}}_{4}$ and suggest strategies for enhancing its n-type conductivity properties, offering new opportunities for manipulating the photocatalytic performance of ${\mathrm{InVO}}_{4}$.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jie完成签到 ,获得积分10
刚刚
刚刚
1秒前
ceds完成签到,获得积分10
1秒前
1秒前
苹果味橙C完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
bkagyin应助HanyuJing采纳,获得10
3秒前
蘑菇应助三块石头采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
Kotori完成签到,获得积分10
4秒前
4秒前
慕青应助一只小羊采纳,获得10
5秒前
小六发布了新的文献求助10
5秒前
王玥发布了新的文献求助10
6秒前
Twonej应助iiiau采纳,获得30
6秒前
林淳完成签到,获得积分10
6秒前
毛毛虫发布了新的文献求助10
6秒前
7秒前
蓝天应助涨知识ing采纳,获得10
7秒前
7秒前
老年发布了新的文献求助10
7秒前
ding应助果汁采纳,获得10
7秒前
海的呼唤发布了新的文献求助10
7秒前
jhw发布了新的文献求助10
8秒前
圆锥香蕉应助失眠夏山采纳,获得20
8秒前
9秒前
Xhhaai应助花生油炒花生米采纳,获得10
10秒前
10秒前
李海翔完成签到,获得积分10
11秒前
自觉思萱发布了新的文献求助10
11秒前
11秒前
顾矜应助实验菜菜君采纳,获得20
12秒前
R沫完成签到,获得积分10
12秒前
gu发布了新的文献求助10
12秒前
蓝天应助FEN采纳,获得10
13秒前
Lee发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106