CBCT‐based synthetic CT image generation using a diffusion model for CBCT‐guided lung radiotherapy

影像引导放射治疗 霍恩斯菲尔德秤 图像质量 锥束ct 核医学 医学 放射治疗 图像配准 人工智能 计算机科学 计算机断层摄影术 放射科 图像(数学)
作者
Xiaoqian Chen,Richard L. J. Qiu,Junbo Peng,Joseph W. Shelton,Chih‐Wei Chang,Xiaofeng Yang,Aparna H. Kesarwala
出处
期刊:Medical Physics [Wiley]
被引量:1
标识
DOI:10.1002/mp.17328
摘要

Abstract Background Although cone beam computed tomography (CBCT) has lower resolution compared to planning CTs (pCT), its lower dose, higher high‐contrast resolution, and shorter scanning time support its widespread use in clinical applications, especially in ensuring accurate patient positioning during the image‐guided radiation therapy (IGRT) process. Purpose While CBCT is critical to IGRT, CBCT image quality can be compromised by severe stripe and scattering artifacts. Tumor movement secondary to respiratory motion also decreases CBCT resolution. In order to improve the image quality of CBCT, we propose a Lung Diffusion Model (L‐DM) framework. Methods Our proposed algorithm is based on a conditional diffusion model trained on pCT and deformed CBCT (dCBCT) image pairs to synthesize lung CT images from dCBCT images and benefit CBCT‐based radiotherapy. dCBCT images were used as the constraint for the L‐DM. The image quality and Hounsfield unit (HU) values of the synthetic CTs (sCT) images generated by the proposed L‐DM were compared to three selected mainstream generation models. Results We verified our model in both an institutional lung cancer dataset and a selected public dataset. Our L‐DM showed significant improvement in the four metrics of mean absolute error (MAE), peak signal‐to‐noise ratio (PSNR), normalized cross‐correlation (NCC), and structural similarity index measure (SSIM). In our institutional dataset, our proposed L‐DM decreased the MAE from 101.47 to 37.87 HU and increased the PSNR from 24.97 to 29.89 dB, the NCC from 0.81 to 0.97, and the SSIM from 0.80 to 0.93. In the public dataset, our proposed L‐DM decreased the MAE from 173.65 to 58.95 HU, while increasing the PSNR, NCC, and SSIM from 13.07 to 24.05 dB, 0.68 to 0.94, and 0.41 to 0.88, respectively. Conclusions The proposed L‐DM significantly improved sCT image quality compared to the pre‐correction CBCT and three mainstream generative models. Our model can benefit CBCT‐based IGRT and other potential clinical applications as it increases the HU accuracy and decreases the artifacts from input CBCT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GXY完成签到,获得积分10
1秒前
xiuwen发布了新的文献求助10
1秒前
啦啦啦完成签到,获得积分10
1秒前
Umwandlung完成签到,获得积分10
3秒前
gorgeousgaga完成签到,获得积分10
3秒前
4秒前
4秒前
科研通AI5应助ipeakkka采纳,获得10
5秒前
852应助章家炜采纳,获得10
6秒前
Gauss应助张小汉采纳,获得30
8秒前
嘻嘻发布了新的文献求助10
8秒前
杰哥完成签到 ,获得积分10
9秒前
Ava应助赵小可可可可采纳,获得10
9秒前
科研通AI5应助kento采纳,获得30
10秒前
nkmenghan发布了新的文献求助10
11秒前
14秒前
redondo10完成签到,获得积分0
15秒前
16秒前
乔qiao发布了新的文献求助30
19秒前
WZ0904发布了新的文献求助10
20秒前
poegtam完成签到,获得积分10
21秒前
大胆盼兰发布了新的文献求助10
22秒前
wuyan204完成签到 ,获得积分10
23秒前
windcreator完成签到,获得积分10
23秒前
redondo5完成签到,获得积分0
23秒前
wangrswjx完成签到 ,获得积分10
23秒前
科研通AI5应助su采纳,获得10
23秒前
26秒前
28秒前
小二郎应助嘻嘻采纳,获得10
28秒前
yun完成签到 ,获得积分10
29秒前
29秒前
31秒前
健忘曼冬发布了新的文献求助10
31秒前
redondo完成签到,获得积分10
31秒前
momo完成签到,获得积分10
32秒前
希望天下0贩的0应助meng采纳,获得10
33秒前
龙歪歪发布了新的文献求助10
34秒前
34秒前
暮城完成签到,获得积分10
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849