CBCT‐based synthetic CT image generation using a diffusion model for CBCT‐guided lung radiotherapy

影像引导放射治疗 霍恩斯菲尔德秤 图像质量 锥束ct 核医学 医学 放射治疗 图像配准 人工智能 计算机科学 计算机断层摄影术 放射科 图像(数学)
作者
Xiaoqian Chen,Richard L. J. Qiu,Junbo Peng,Joseph W. Shelton,Chih‐Wei Chang,Xiaofeng Yang,Aparna H. Kesarwala
出处
期刊:Medical Physics [Wiley]
被引量:1
标识
DOI:10.1002/mp.17328
摘要

Abstract Background Although cone beam computed tomography (CBCT) has lower resolution compared to planning CTs (pCT), its lower dose, higher high‐contrast resolution, and shorter scanning time support its widespread use in clinical applications, especially in ensuring accurate patient positioning during the image‐guided radiation therapy (IGRT) process. Purpose While CBCT is critical to IGRT, CBCT image quality can be compromised by severe stripe and scattering artifacts. Tumor movement secondary to respiratory motion also decreases CBCT resolution. In order to improve the image quality of CBCT, we propose a Lung Diffusion Model (L‐DM) framework. Methods Our proposed algorithm is based on a conditional diffusion model trained on pCT and deformed CBCT (dCBCT) image pairs to synthesize lung CT images from dCBCT images and benefit CBCT‐based radiotherapy. dCBCT images were used as the constraint for the L‐DM. The image quality and Hounsfield unit (HU) values of the synthetic CTs (sCT) images generated by the proposed L‐DM were compared to three selected mainstream generation models. Results We verified our model in both an institutional lung cancer dataset and a selected public dataset. Our L‐DM showed significant improvement in the four metrics of mean absolute error (MAE), peak signal‐to‐noise ratio (PSNR), normalized cross‐correlation (NCC), and structural similarity index measure (SSIM). In our institutional dataset, our proposed L‐DM decreased the MAE from 101.47 to 37.87 HU and increased the PSNR from 24.97 to 29.89 dB, the NCC from 0.81 to 0.97, and the SSIM from 0.80 to 0.93. In the public dataset, our proposed L‐DM decreased the MAE from 173.65 to 58.95 HU, while increasing the PSNR, NCC, and SSIM from 13.07 to 24.05 dB, 0.68 to 0.94, and 0.41 to 0.88, respectively. Conclusions The proposed L‐DM significantly improved sCT image quality compared to the pre‐correction CBCT and three mainstream generative models. Our model can benefit CBCT‐based IGRT and other potential clinical applications as it increases the HU accuracy and decreases the artifacts from input CBCT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
如意的碧蓉完成签到,获得积分10
1秒前
不配.应助dong采纳,获得10
1秒前
金豆完成签到,获得积分10
2秒前
科研通AI2S应助吴帆采纳,获得10
3秒前
4秒前
ding应助PANYIAO采纳,获得10
5秒前
hao完成签到,获得积分10
7秒前
7秒前
7秒前
逍遥猪皮完成签到,获得积分10
9秒前
可爱的函函应助eternity136采纳,获得10
12秒前
12秒前
xuyi完成签到,获得积分10
13秒前
李爱国应助。。。采纳,获得10
13秒前
15秒前
16秒前
酷波er应助JXY采纳,获得10
18秒前
礼拜天发布了新的文献求助10
19秒前
祈君完成签到 ,获得积分20
20秒前
yufanhui举报体贴的青烟求助涉嫌违规
20秒前
whisper完成签到,获得积分10
20秒前
daniel完成签到,获得积分10
20秒前
21秒前
Sience发布了新的文献求助10
21秒前
21秒前
gratitude发布了新的文献求助20
21秒前
hyx完成签到,获得积分20
22秒前
坚定天蓝发布了新的文献求助10
22秒前
23秒前
23秒前
passion完成签到 ,获得积分10
23秒前
26秒前
YKXYXB发布了新的文献求助10
26秒前
dichloro完成签到,获得积分10
27秒前
27秒前
调研昵称发布了新的文献求助10
28秒前
CAST1347完成签到,获得积分10
28秒前
29秒前
小米完成签到 ,获得积分10
29秒前
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135113
求助须知:如何正确求助?哪些是违规求助? 2786095
关于积分的说明 7775189
捐赠科研通 2441915
什么是DOI,文献DOI怎么找? 1298256
科研通“疑难数据库(出版商)”最低求助积分说明 625108
版权声明 600839