Artificial intelligence: revolutionizing robotic surgery: review

医学 机械人手术 外科 普通外科
作者
Muhammad Iftikhar,Muhammad Saqib,Muhammad Zareen,Hassan Mumtaz
出处
期刊:Annals of medicine and surgery [Elsevier]
卷期号:86 (9): 5401-5409 被引量:5
标识
DOI:10.1097/ms9.0000000000002426
摘要

Robotic surgery, known for its minimally invasive techniques and computer-controlled robotic arms, has revolutionized modern medicine by providing improved dexterity, visualization, and tremor reduction compared to traditional methods. The integration of artificial intelligence (AI) into robotic surgery has further advanced surgical precision, efficiency, and accessibility. This paper examines the current landscape of AI-driven robotic surgical systems, detailing their benefits, limitations, and future prospects. Initially, AI applications in robotic surgery focused on automating tasks like suturing and tissue dissection to enhance consistency and reduce surgeon workload. Present AI-driven systems incorporate functionalities such as image recognition, motion control, and haptic feedback, allowing real-time analysis of surgical field images and optimizing instrument movements for surgeons. The advantages of AI integration include enhanced precision, reduced surgeon fatigue, and improved safety. However, challenges such as high development costs, reliance on data quality, and ethical concerns about autonomy and liability hinder widespread adoption. Regulatory hurdles and workflow integration also present obstacles. Future directions for AI integration in robotic surgery include enhancing autonomy, personalizing surgical approaches, and refining surgical training through AI-powered simulations and virtual reality. Overall, AI integration holds promise for advancing surgical care, with potential benefits including improved patient outcomes and increased access to specialized expertise. Addressing challenges and promoting responsible adoption are essential for realizing the full potential of AI-driven robotic surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LYSM应助竼竼采纳,获得10
2秒前
小趴菜完成签到,获得积分10
4秒前
5秒前
欣喜大地完成签到 ,获得积分10
6秒前
7秒前
9秒前
10秒前
onedowmsk发布了新的文献求助10
11秒前
12秒前
afterly发布了新的文献求助10
12秒前
12秒前
啧啧啧发布了新的文献求助10
13秒前
13秒前
朝气发布了新的文献求助10
14秒前
14秒前
lee完成签到,获得积分10
14秒前
15秒前
kiki发布了新的文献求助10
15秒前
lingling发布了新的文献求助30
16秒前
周周发布了新的文献求助10
16秒前
自自自在完成签到,获得积分10
16秒前
Ava应助lijg71采纳,获得10
16秒前
17秒前
希望天下0贩的0应助afterly采纳,获得10
19秒前
领导范儿应助xjw采纳,获得10
19秒前
王琳琳完成签到 ,获得积分10
19秒前
LCFXR发布了新的文献求助10
19秒前
21秒前
老白非完成签到,获得积分10
21秒前
Carpe47发布了新的文献求助10
22秒前
CipherSage应助wandelong采纳,获得10
23秒前
万能图书馆应助周周采纳,获得10
24秒前
啧啧啧完成签到,获得积分10
25秒前
heavenhorse应助lingling采纳,获得30
27秒前
29秒前
ccds完成签到,获得积分20
30秒前
30秒前
31秒前
31秒前
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3358519
求助须知:如何正确求助?哪些是违规求助? 2981683
关于积分的说明 8700144
捐赠科研通 2663263
什么是DOI,文献DOI怎么找? 1458365
科研通“疑难数据库(出版商)”最低求助积分说明 675112
邀请新用户注册赠送积分活动 666149