Robotic surgery, known for its minimally invasive techniques and computer-controlled robotic arms, has revolutionized modern medicine by providing improved dexterity, visualization, and tremor reduction compared to traditional methods. The integration of artificial intelligence (AI) into robotic surgery has further advanced surgical precision, efficiency, and accessibility. This paper examines the current landscape of AI-driven robotic surgical systems, detailing their benefits, limitations, and future prospects. Initially, AI applications in robotic surgery focused on automating tasks like suturing and tissue dissection to enhance consistency and reduce surgeon workload. Present AI-driven systems incorporate functionalities such as image recognition, motion control, and haptic feedback, allowing real-time analysis of surgical field images and optimizing instrument movements for surgeons. The advantages of AI integration include enhanced precision, reduced surgeon fatigue, and improved safety. However, challenges such as high development costs, reliance on data quality, and ethical concerns about autonomy and liability hinder widespread adoption. Regulatory hurdles and workflow integration also present obstacles. Future directions for AI integration in robotic surgery include enhancing autonomy, personalizing surgical approaches, and refining surgical training through AI-powered simulations and virtual reality. Overall, AI integration holds promise for advancing surgical care, with potential benefits including improved patient outcomes and increased access to specialized expertise. Addressing challenges and promoting responsible adoption are essential for realizing the full potential of AI-driven robotic surgery.