Built Environment’s Non-Linear Impact on Subway Passenger Flow Through Improved Interpretable Machine Learning

流量(数学) 计算机科学 环境科学 运输工程 人工智能 工程类 数学 几何学
作者
Peikun Li,Xumei Chen,Wenbo Lu,Hao Wang,Lei Yu
出处
期刊:Transportation Research Record [SAGE Publishing]
被引量:1
标识
DOI:10.1177/03611981241287535
摘要

Understanding the complex correlation between the built environment and subway passenger flow can provide unique insights for the development of transportation operations and urban coordination policies. Few studies have systematically analyzed the rationality of selecting built environment variables and further explored the non-linear relationships. In this study, we integrated various sources of built environmental factors and developed an interpretable machine learning analysis framework using backward elimination extreme gradient boosting and SHapley Additive exPlanations (SHAP) values analysis (BE-XGBoost-SHAP). The framework was validated by analyzing passenger flows during the morning peak, non-peak, and evening peak periods at the station level. The research results indicate that there are significant differences between built environment factors and the time-varying passenger flow. Land use characteristics significantly dominate across all three temporal periods. The importance of other variable types in relation to passenger flows varies significantly across the three time periods. It is worth noting that the relationships between all variables and passenger flow at different time periods are non-linear, with the majority displaying threshold effects. Compared with the gradient boosting decision tree (GBDT) and ordinary least squares (OLS) models, the proposed interpretive framework performs better as regards R-square, root mean square error (RMSE), and mean absolute error (MAE) metrics. This study offers valuable insights, elucidating the pivotal land use attributes that notably affect passenger flow, the significance of varied built environment factors across distinct time spans, and the acknowledgment of non-linearities and threshold effects within these relationships. These findings are imperative for urban planning and the enhancement of station area design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
傲娇而又骄傲完成签到 ,获得积分10
刚刚
DKW发布了新的文献求助10
1秒前
1秒前
超帅的访云完成签到,获得积分10
1秒前
大个应助宋嘉新采纳,获得10
1秒前
chf102完成签到,获得积分10
2秒前
hzh完成签到 ,获得积分10
2秒前
ding应助tejing1158采纳,获得10
2秒前
hjb完成签到,获得积分10
2秒前
1111完成签到,获得积分10
3秒前
小二郎应助剁辣椒蒸鱼头采纳,获得30
3秒前
3秒前
4秒前
CipherSage应助GG采纳,获得10
4秒前
4秒前
小宇宙完成签到,获得积分10
4秒前
贾旭完成签到,获得积分10
5秒前
CR7举报天天小女孩求助涉嫌违规
5秒前
ll应助BenQiu采纳,获得10
5秒前
资山雁完成签到 ,获得积分10
5秒前
完美世界应助BaekHyun采纳,获得10
6秒前
hjb发布了新的文献求助10
6秒前
科目三应助灰灰采纳,获得10
7秒前
yulong完成签到 ,获得积分10
7秒前
魔幻一笑完成签到,获得积分10
7秒前
张大英发布了新的文献求助10
8秒前
8秒前
恩恩灬完成签到,获得积分10
8秒前
月月完成签到,获得积分10
8秒前
9秒前
9秒前
CAOHOU应助归途采纳,获得10
9秒前
田様应助大白不白采纳,获得10
10秒前
10秒前
魔幻一笑发布了新的文献求助30
11秒前
wzz完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016913
求助须知:如何正确求助?哪些是违规求助? 3557067
关于积分的说明 11323667
捐赠科研通 3289813
什么是DOI,文献DOI怎么找? 1812563
邀请新用户注册赠送积分活动 888139
科研通“疑难数据库(出版商)”最低求助积分说明 812136