Built Environment’s Non-Linear Impact on Subway Passenger Flow Through Improved Interpretable Machine Learning

流量(数学) 计算机科学 环境科学 运输工程 人工智能 工程类 数学 几何学
作者
Peikun Li,Xumei Chen,Wenbo Lu,Hao Wang,Lei Yu
出处
期刊:Transportation Research Record [SAGE]
标识
DOI:10.1177/03611981241287535
摘要

Understanding the complex correlation between the built environment and subway passenger flow can provide unique insights for the development of transportation operations and urban coordination policies. Few studies have systematically analyzed the rationality of selecting built environment variables and further explored the non-linear relationships. In this study, we integrated various sources of built environmental factors and developed an interpretable machine learning analysis framework using backward elimination extreme gradient boosting and SHapley Additive exPlanations (SHAP) values analysis (BE-XGBoost-SHAP). The framework was validated by analyzing passenger flows during the morning peak, non-peak, and evening peak periods at the station level. The research results indicate that there are significant differences between built environment factors and the time-varying passenger flow. Land use characteristics significantly dominate across all three temporal periods. The importance of other variable types in relation to passenger flows varies significantly across the three time periods. It is worth noting that the relationships between all variables and passenger flow at different time periods are non-linear, with the majority displaying threshold effects. Compared with the gradient boosting decision tree (GBDT) and ordinary least squares (OLS) models, the proposed interpretive framework performs better as regards R-square, root mean square error (RMSE), and mean absolute error (MAE) metrics. This study offers valuable insights, elucidating the pivotal land use attributes that notably affect passenger flow, the significance of varied built environment factors across distinct time spans, and the acknowledgment of non-linearities and threshold effects within these relationships. These findings are imperative for urban planning and the enhancement of station area design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小包子完成签到,获得积分10
刚刚
sx发布了新的文献求助10
刚刚
回答完成签到,获得积分10
1秒前
陈民完成签到,获得积分20
1秒前
MU_CR7完成签到,获得积分10
2秒前
Hello应助Neinei采纳,获得10
3秒前
zaafbb发布了新的文献求助10
4秒前
骄傲慕尼黑完成签到,获得积分10
4秒前
ZQP发布了新的文献求助10
4秒前
sssnesstudy完成签到,获得积分10
5秒前
aj关注了科研通微信公众号
5秒前
汉堡包应助Spark采纳,获得10
6秒前
佳小佳完成签到,获得积分10
6秒前
李健应助dayueban采纳,获得10
6秒前
煮饭吃Zz发布了新的文献求助10
7秒前
7秒前
朴实初夏完成签到 ,获得积分10
8秒前
zhouleiwang发布了新的文献求助10
9秒前
sx完成签到,获得积分10
9秒前
9秒前
无昵称完成签到,获得积分10
10秒前
情怀应助机智胡萝卜采纳,获得30
10秒前
Hbobo发布了新的文献求助10
10秒前
Anonymous完成签到,获得积分10
11秒前
11秒前
11秒前
13秒前
ZQP完成签到,获得积分10
13秒前
谷雨下完成签到,获得积分10
14秒前
冰柠发布了新的文献求助10
14秒前
典雅碧空发布了新的文献求助10
15秒前
dong发布了新的文献求助10
15秒前
16秒前
Spark完成签到,获得积分10
17秒前
kuyi完成签到 ,获得积分10
17秒前
所所应助houchengru采纳,获得10
17秒前
18秒前
18秒前
19秒前
hadern完成签到,获得积分20
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156078
求助须知:如何正确求助?哪些是违规求助? 2807458
关于积分的说明 7873196
捐赠科研通 2465782
什么是DOI,文献DOI怎么找? 1312412
科研通“疑难数据库(出版商)”最低求助积分说明 630102
版权声明 601905