Artificial Tactile Sensory Finger for Contact Pattern Identification Based on High Spatiotemporal Piezoresistive Sensor Array

压阻效应 材料科学 触觉传感器 感觉系统 鉴定(生物学) 传感器阵列 触觉显示器 触觉知觉 纳米技术 人工智能 光电子学 计算机科学 神经科学 感知 机器人 生物 植物 机器学习
作者
Qiangqiang Ouyang,Xiaoying Wang,Shaoyi Wang,Zizhen Huang,Zhaohui Shi,Mao Pang,Bin Liu,Chee Keong Tan,Qintai Yang,Limin Rong
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (44): 61179-61193 被引量:1
标识
DOI:10.1021/acsami.4c07056
摘要

Human fingertip tactile perception relies on the activation of densely distributed tactile receptors to identify contact patterns in the brain. Despite significant efforts to integrate tactile sensors with machine learning algorithms for recognizing physical patterns on object surfaces, developing a tactile sensing system that emulates human fingertip capabilities for identifying contact patterns with a high spatiotemporal resolution remains a formidable challenge. In this study, we present the development of an artificial tactile finger for accurate contact pattern identification, achieved through the integration of a high spatiotemporal piezoresistive sensor array (PRSA) and a convolutional neural network (CNN) model. Spatiotemporal characterization tests reveal that the artificial finger exhibits a fast temporal resolution of approximately 7 ms and achieves a two-point threshold of 1.5 mm, surpassing that of the human fingertip. To compare the performance of the artificial finger with the human finger in recognizing different patterns, we acquired pressure images by pressing the artificial finger, coated with a flexible PRSA film, onto both simple embossed and complex curved patterns while also recording human recognition results of perceiving these patterns. Experimental findings demonstrate that the artificial finger achieves higher classification accuracy in recognizing both simple and complex patterns (99.0 and 96.1%, respectively) compared to the human fingertip (69.1 and 22.7%). This artificial finger serves as a promising platform with great potential for various robotic tactile sensing applications including prosthetics, skin electronics, and robotic surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺心的半兰完成签到 ,获得积分20
刚刚
selfevidbet发布了新的文献求助30
刚刚
刚刚
文忉嫣发布了新的文献求助10
刚刚
打工羊完成签到,获得积分10
刚刚
白衣未央完成签到,获得积分10
刚刚
阳光向秋发布了新的文献求助10
刚刚
刚刚
QL应助图苏采纳,获得30
1秒前
1秒前
hy完成签到,获得积分10
1秒前
粗暴的君浩完成签到,获得积分10
1秒前
1秒前
2秒前
大个应助立波采纳,获得10
2秒前
乐乐应助柔弱凡松采纳,获得10
2秒前
3秒前
3秒前
共享精神应助白华苍松采纳,获得10
3秒前
钰宁发布了新的文献求助10
4秒前
4秒前
小神完成签到,获得积分10
5秒前
菠萝炒蛋加饭完成签到 ,获得积分10
5秒前
Eddy完成签到,获得积分20
5秒前
无敌OUT曼完成签到,获得积分10
5秒前
luuuuuing发布了新的文献求助30
6秒前
spring完成签到 ,获得积分10
6秒前
ding应助白衣未央采纳,获得10
6秒前
bkagyin应助饱满小兔子采纳,获得30
6秒前
吨吨喝水发布了新的文献求助10
7秒前
bkagyin应助细心映寒采纳,获得10
7秒前
灬乔发布了新的文献求助30
7秒前
7秒前
7秒前
西西的瓜皮皮完成签到,获得积分20
8秒前
8秒前
善良友安完成签到,获得积分10
9秒前
研友_VZG7GZ应助Xxaaa采纳,获得10
10秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762