材料科学
精炼(冶金)
电池(电)
钠离子电池
离子
阴极
钠
纳米技术
无机化学
电化学
冶金
电极
物理化学
热力学
法拉第效率
量子力学
物理
功率(物理)
化学
作者
Tao Yuan,Pengzhi Li,Yuanyuan Sun,Haiying Che,Qinfeng Zheng,Yixiao Zhang,Shuai Huang,Jian Qiu,Yuepeng Pang,Junhe Yang,Zi‐Feng Ma,Shiyou Zheng
标识
DOI:10.1002/adfm.202414627
摘要
Abstract The O3‐type NaNi 0.5 Mn 0.5 O 2 (NM) layered cathode in sodium ion batteries (SIBs) undergoes structural distortion and capacity degradation during cycling, which seriously hinders its practical application. Herein, lanthanum (La) is employed as a dopant in O3‐NaNi 0.5 Mn 0.5‐x La x O 2 (NML) cathodes, which triggered an “atomic knife” effect, reducing particle size, and stabilizing crystal structure. The larger La ions generated structural strain during grain growth at high temperatures, hindering the movement of grain boundaries and refining the size of NML particles. Comprehensive characterizations illuminated La doping‐induced atomic site occupancy and phase transformations within NML. A competitive phase formation between layered NML and perovskite LaMnO 3 (LMO) is observed. Spontaneously formed perovskite LMO provides surface protection. Moreover, strong La─O bonds expand the Na interlayer spacing, enhancing Na + ‐ion diffusion. Consequently, NML cathodes exhibit superior long‐term cycling stability and ultrahigh rate capacities compared to pristine NM cathode and most currently reported layered cathodes for SIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI