The Role of α−β Quartz Transition in Fluid Storage in Crust From the Evidence of Electrical Conductivity

石英 微观结构 电导率 电阻率和电导率 相变 矿物学 材料科学 结壳 地质学 退火(玻璃) 微量元素 过渡带 复合材料 凝聚态物理 冶金 地球物理学 化学 物理化学 工程类 物理 电气工程
作者
Haiying Hu,Chuanyu Yin,Lidong Dai,Jinhua Lai,Yiqi Chen,Pengfei Wang,Jinlong Zhu,Songbai Han
出处
期刊:Journal Of Geophysical Research: Solid Earth [Wiley]
卷期号:129 (9) 被引量:1
标识
DOI:10.1029/2024jb029140
摘要

Abstract Aqueous fluids are extensively present in the middle to lower crust, as revealed by seismic and magnetotelluric soundings. The α−β quartz phase transition significantly affects many physical properties and leads to substantial microcracks that can provide pathways for the migration of crustal fluids. A systematic investigation of macroscopic physical properties and microstructure of quartz is crucial to elucidate their correlation. In the present study, the effects of water content, trace elements, orientations, and phase transition on the electrical conductivity of quartz were thoroughly evaluated at 400−900°C and 1 GPa. Individual annealing experiments were simultaneously conducted on quartz single crystals at different peak temperatures and 1 GPa to investigate the evolution and spatial distribution of microcracks using X‐ray microtomography (CT) and backscattered electron imaging. We found that trace element content and orientations, rather than H 2 O, are the dominant factors controlling the conductivity of quartz. The distinct changes in conductivity of single crystals at around α−β phase transition temperature are attributed to the transformation of microcracks from isolated to interconnected networks, as confirmed by two‐dimensional (2‐D) and three‐dimensional (3‐D) microstructure images. Based on the variation in electrical conductivity and microstructure across the transition, it thus is proposed that the intragranular microcracks caused by quartz phase transition can serve as fluid or melt pathways within highly conductive zones present in the middle to lower crust, while α‐quartz acts as an impermeable cap.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
张蕊发布了新的文献求助10
3秒前
4秒前
欣慰煎蛋应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
事上炼应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
所所应助科研通管家采纳,获得10
6秒前
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得30
7秒前
浮游应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
你好完成签到,获得积分10
9秒前
Spike完成签到,获得积分10
10秒前
张靖雯发布了新的文献求助10
10秒前
善学以致用应助詹妮采纳,获得10
11秒前
无奈凉面发布了新的文献求助10
12秒前
13秒前
Zenghaw发布了新的文献求助10
13秒前
14秒前
16秒前
终成发布了新的文献求助50
17秒前
小余同学发布了新的文献求助10
17秒前
lalala完成签到,获得积分10
18秒前
18秒前
小青椒应助FIN采纳,获得50
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287984
求助须知:如何正确求助?哪些是违规求助? 4440026
关于积分的说明 13823687
捐赠科研通 4322271
什么是DOI,文献DOI怎么找? 2372462
邀请新用户注册赠送积分活动 1367928
关于科研通互助平台的介绍 1331548