侧链
多糖
化学
黄原胶
主链
有机化学
材料科学
聚合物
流变学
复合材料
作者
Yantao Liu,Diming Li,Junxian Hu,Pengfei Li,Liang He,Nan Yang,Katsuyoshi Nishinari
标识
DOI:10.1016/j.ijbiomac.2024.135396
摘要
In this study, the synergistic effect and weak gel mechanism of XG and Gleditsia sinensis polysaccharide (GSP) in different ratios were studied through the rheological properties, microstructure and molecular simulation based on density functional theory (DFT). The results of rheological properties showed that the mixtures formed a weak gel at the concentration of 0.5 % (w/v), with the synergistic impact peaking at a XG/GSP ratio of 3:7. Weak gels produced by XG and GSP had the intersection of G' and G" within the temperature sweep range, and the largest change in the G' slope at a XG/GSP ratio of 3:7. By calculating the interaction energy, it was found that the backbone of XG was more likely to interact with the backbone of GSP. Furthermore, the XG mainchain intersected with the backbone of GSP in a cross shape ("X" shape). As a result, this paper proposed a possible mechanism for the formation of the XG/GSP weak gel, with XG as the main chain and GSP as the grid point, and the main interaction type being hydrogen bonding, with the van der Waals force also involved. The results provide new insight for designing and producing physical gels with specific interactions in food industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI