Deciphering the Atomic-Scale Structural Origin for Photoluminescence Quenching in Tin–Lead Alloyed Perovskite Nanocrystals

纳米晶 光致发光 材料科学 钙钛矿(结构) 猝灭(荧光) 晶体缺陷 纳米技术 原子单位 化学物理 卤化物 微观结构 冶金 结晶学 光电子学 无机化学 荧光 化学 光学 物理 量子力学
作者
Dandan Wang,Yusheng Li,Yongge Yang,Yao Guo,Huiyun Wei,Feng Liu,Chao Ding,Yuyao Wei,Dong Liu,Hua Li,Guozheng Shi,Shikai Chen,Hongshi Li,Akihito Fuchimoto,Jing Xia,Shuzi Hayase,Qing Shen
出处
期刊:ACS Nano [American Chemical Society]
被引量:4
标识
DOI:10.1021/acsnano.4c01674
摘要

The development of tin-lead alloyed halide perovskite nanocrystals (PNCs) is highly desirable for creating ultrastable, eco-friendly optoelectronic applications. However, the current incorporation of tin into the lead matrix results in severe photoluminescence (PL) quenching. To date, the precise atomic-scale structural origins of this quenching are still unknown, representing a significant barrier to fully realizing the potential of these materials. Here, we uncover the distinctive defect-related microstructures responsible for PL quenching using atomic-resolution scanning transmission electron microscopy and theoretical calculations. Our findings reveal an increase in point defects and Ruddlesden-Popper (RP) planar faults with increasing tin content. Notably, the point defects include a spectrum of vacancies and previously overlooked antisite defects with bromide vacancies and cation antisite defects emerging as the primary contributors to deep-level defects. Furthermore, the RP planar faults exhibit not only the typical rock-salt stacking pattern found in pure Pb-based PNCs but also previously undocumented microstructures rich in bromide vacancies and deep-level cation antisite defects. Direct strain imaging uncovers severe lattice distortion and significant inhomogeneous strain distributions caused by point defect aggregation, potentially breaking the local force balance and driving RP planar fault formation via lattice slippage. Our work illuminates the nature and evolution of defects in tin-lead alloyed halide perovskite nanocrystals and their profound impact on PL quenching, providing insights that support future material strategies in the development of less toxic tin-lead alloyed perovskite nanocrystals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hey完成签到 ,获得积分10
刚刚
刚刚
彭彦舟发布了新的文献求助10
1秒前
皮皮完成签到 ,获得积分10
1秒前
1秒前
lufang完成签到,获得积分10
1秒前
健忘蘑菇完成签到,获得积分10
1秒前
淡淡紫山完成签到,获得积分10
2秒前
花样年华完成签到,获得积分0
2秒前
粥粥完成签到,获得积分10
2秒前
Lin完成签到,获得积分10
2秒前
无情初兰发布了新的文献求助10
2秒前
Janmy完成签到,获得积分10
2秒前
3秒前
skw完成签到,获得积分10
3秒前
tanhaowen完成签到 ,获得积分10
4秒前
Maxpan完成签到,获得积分10
4秒前
xie发布了新的文献求助10
4秒前
mhr发布了新的文献求助10
4秒前
囡囡发布了新的文献求助10
5秒前
5秒前
6秒前
天真的宝马完成签到,获得积分10
6秒前
五十二完成签到,获得积分10
6秒前
Precious完成签到,获得积分10
6秒前
bkagyin应助思念是什么味道采纳,获得10
7秒前
7秒前
赘婿应助erhgbw采纳,获得10
7秒前
7秒前
苏格拉底的底牌完成签到,获得积分10
7秒前
李爱国应助默默襄采纳,获得10
7秒前
明亮梦山完成签到 ,获得积分10
8秒前
Akim应助Janmy采纳,获得10
8秒前
所所应助热心乐驹采纳,获得10
8秒前
8秒前
9秒前
MrZhou发布了新的文献求助10
9秒前
weiwenzuo完成签到,获得积分10
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402461
求助须知:如何正确求助?哪些是违规求助? 4521103
关于积分的说明 14083816
捐赠科研通 4435114
什么是DOI,文献DOI怎么找? 2434563
邀请新用户注册赠送积分活动 1426697
关于科研通互助平台的介绍 1405445