Innovative Lightweight Deep Learning Architecture for Enhanced Rice Pest Identification

鉴定(生物学) 有害生物分析 建筑 深度学习 计算机科学 人工智能 材料科学 生物 植物 考古 地理
作者
Haiying Song,Y. Yan,Shijun Deng,Jian Cen,Jianbin Xiong
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (9): 096007-096007 被引量:1
标识
DOI:10.1088/1402-4896/ad69d5
摘要

Abstract Pest detection is a crucial aspect of rice production. Accurate and timely identification of rice pests can assist farmers in taking prompt measures for control. To enhance the precision and real-time performance of rice pest detection, this paper introduces a novel YOLOv8-SCS architecture that integrates Space-to-Depth Convolution (SPD-Conv), Context Guided block (CG block), and Slide Loss. Initially, the original algorithm’s convolutional module is improved by introducing the SPD-Conv module, which reorganises the input channel dimensions into spatial dimensions, enabling the model to capture fine-grained pest features more efficiently while maintaining a lightweight model architecture. Subsequently, the CG block module is integrated into the CSPDarknet53 to 2-Stage FPN (C2f) structure, maintaining the models lightweight nature while enhancing its feature extraction capabilities. Finally, the Binary Cross-Entropy (BCE) is refined by incorporating the Slide Loss function, which encourages the model to focus more on challenging samples during training, thereby improving the model’s generalization across various samples. To validate the effectiveness of the improved algorithm, a series of experiments were conducted on a rice pest dataset. The results demonstrate that the proposed model outperforms the original YOLOv8 in rice pest detection, achieving an mAP of 87.9%, which is a 5.7% improvement over the original YOLOv8. The model also features a 44.1% reduction in parameter count and a decrease of 11.7 GFLOPs in computational requirements, meeting the demands for real-time detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
曹毅凯完成签到,获得积分10
1秒前
着急的问凝关注了科研通微信公众号
1秒前
hhhh完成签到,获得积分10
2秒前
zy完成签到,获得积分10
2秒前
4秒前
4秒前
赫灵竹完成签到,获得积分10
4秒前
ye1121完成签到,获得积分10
6秒前
SciGPT应助咸鱼饭团采纳,获得10
6秒前
Vincent1990发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
9秒前
10秒前
斯文听筠发布了新的文献求助10
10秒前
YT完成签到,获得积分10
10秒前
Akim应助zhaco采纳,获得10
10秒前
lww发布了新的文献求助30
12秒前
HBin完成签到,获得积分10
12秒前
浑灵安完成签到 ,获得积分10
13秒前
13秒前
zhaozhao发布了新的文献求助10
14秒前
ceceliaerr完成签到,获得积分10
15秒前
18062677029发布了新的文献求助10
15秒前
CipherSage应助卡乐瑞咩吹可采纳,获得10
16秒前
17秒前
研友_ngqxV8完成签到,获得积分0
17秒前
krislan完成签到,获得积分10
18秒前
19秒前
19秒前
WillianLinnn完成签到,获得积分10
19秒前
229536051213wee完成签到,获得积分20
20秒前
20秒前
21秒前
123321321345发布了新的文献求助30
24秒前
唐俊杰发布了新的文献求助10
24秒前
24秒前
gjh发布了新的文献求助10
25秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5227053
求助须知:如何正确求助?哪些是违规求助? 4398242
关于积分的说明 13688816
捐赠科研通 4262916
什么是DOI,文献DOI怎么找? 2339413
邀请新用户注册赠送积分活动 1336749
关于科研通互助平台的介绍 1292800