亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Innovative Lightweight Deep Learning Architecture for Enhanced Rice Pest Identification

鉴定(生物学) 有害生物分析 建筑 深度学习 计算机科学 人工智能 材料科学 生物 植物 考古 地理
作者
Haiying Song,Y. Yan,Shijun Deng,Jian Cen,Jianbin Xiong
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (9): 096007-096007 被引量:1
标识
DOI:10.1088/1402-4896/ad69d5
摘要

Abstract Pest detection is a crucial aspect of rice production. Accurate and timely identification of rice pests can assist farmers in taking prompt measures for control. To enhance the precision and real-time performance of rice pest detection, this paper introduces a novel YOLOv8-SCS architecture that integrates Space-to-Depth Convolution (SPD-Conv), Context Guided block (CG block), and Slide Loss. Initially, the original algorithm’s convolutional module is improved by introducing the SPD-Conv module, which reorganises the input channel dimensions into spatial dimensions, enabling the model to capture fine-grained pest features more efficiently while maintaining a lightweight model architecture. Subsequently, the CG block module is integrated into the CSPDarknet53 to 2-Stage FPN (C2f) structure, maintaining the models lightweight nature while enhancing its feature extraction capabilities. Finally, the Binary Cross-Entropy (BCE) is refined by incorporating the Slide Loss function, which encourages the model to focus more on challenging samples during training, thereby improving the model’s generalization across various samples. To validate the effectiveness of the improved algorithm, a series of experiments were conducted on a rice pest dataset. The results demonstrate that the proposed model outperforms the original YOLOv8 in rice pest detection, achieving an mAP of 87.9%, which is a 5.7% improvement over the original YOLOv8. The model also features a 44.1% reduction in parameter count and a decrease of 11.7 GFLOPs in computational requirements, meeting the demands for real-time detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
时舒完成签到 ,获得积分10
6秒前
33秒前
完美世界应助科研通管家采纳,获得10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
1分钟前
wanci应助qsh采纳,获得10
1分钟前
顺鑫完成签到 ,获得积分10
1分钟前
qsh完成签到,获得积分10
2分钟前
阿铭完成签到 ,获得积分10
2分钟前
2分钟前
5823364完成签到,获得积分10
2分钟前
qsh发布了新的文献求助10
2分钟前
2分钟前
3分钟前
NexusExplorer应助科研通管家采纳,获得10
3分钟前
脑洞疼应助科研通管家采纳,获得10
3分钟前
情怀应助科研通管家采纳,获得30
3分钟前
CipherSage应助科研通管家采纳,获得10
3分钟前
大雁完成签到 ,获得积分10
3分钟前
3分钟前
落落完成签到 ,获得积分0
4分钟前
4分钟前
4分钟前
LIKUN完成签到,获得积分10
4分钟前
小马甲应助科研通管家采纳,获得10
5分钟前
vitamin完成签到 ,获得积分10
5分钟前
6分钟前
7分钟前
斯文败类应助科研通管家采纳,获得10
7分钟前
7分钟前
7分钟前
8分钟前
8分钟前
Hayat发布了新的文献求助20
8分钟前
能干觅夏完成签到 ,获得积分10
8分钟前
8分钟前
lzx应助科研通管家采纳,获得100
9分钟前
iorpi完成签到,获得积分10
9分钟前
9分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963228
求助须知:如何正确求助?哪些是违规求助? 3509100
关于积分的说明 11145124
捐赠科研通 3242212
什么是DOI,文献DOI怎么找? 1791810
邀请新用户注册赠送积分活动 873168
科研通“疑难数据库(出版商)”最低求助积分说明 803643