Innovative Lightweight Deep Learning Architecture for Enhanced Rice Pest Identification

鉴定(生物学) 有害生物分析 建筑 深度学习 计算机科学 人工智能 材料科学 生物 植物 考古 地理
作者
Haiying Song,Y. Yan,Shijun Deng,Jian Cen,Jianbin Xiong
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (9): 096007-096007 被引量:1
标识
DOI:10.1088/1402-4896/ad69d5
摘要

Abstract Pest detection is a crucial aspect of rice production. Accurate and timely identification of rice pests can assist farmers in taking prompt measures for control. To enhance the precision and real-time performance of rice pest detection, this paper introduces a novel YOLOv8-SCS architecture that integrates Space-to-Depth Convolution (SPD-Conv), Context Guided block (CG block), and Slide Loss. Initially, the original algorithm’s convolutional module is improved by introducing the SPD-Conv module, which reorganises the input channel dimensions into spatial dimensions, enabling the model to capture fine-grained pest features more efficiently while maintaining a lightweight model architecture. Subsequently, the CG block module is integrated into the CSPDarknet53 to 2-Stage FPN (C2f) structure, maintaining the models lightweight nature while enhancing its feature extraction capabilities. Finally, the Binary Cross-Entropy (BCE) is refined by incorporating the Slide Loss function, which encourages the model to focus more on challenging samples during training, thereby improving the model’s generalization across various samples. To validate the effectiveness of the improved algorithm, a series of experiments were conducted on a rice pest dataset. The results demonstrate that the proposed model outperforms the original YOLOv8 in rice pest detection, achieving an mAP of 87.9%, which is a 5.7% improvement over the original YOLOv8. The model also features a 44.1% reduction in parameter count and a decrease of 11.7 GFLOPs in computational requirements, meeting the demands for real-time detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
2秒前
Heng发布了新的文献求助10
3秒前
4秒前
4秒前
英姑应助敌不过时间采纳,获得10
4秒前
baba小天后发布了新的文献求助10
4秒前
思思发布了新的文献求助10
5秒前
善学以致用应助SOLKATT采纳,获得10
6秒前
kun发布了新的文献求助10
7秒前
7秒前
甜甜的文轩完成签到,获得积分10
8秒前
xx发布了新的文献求助10
8秒前
小雒雒完成签到,获得积分20
8秒前
WW完成签到,获得积分10
8秒前
asd举报nn求助涉嫌违规
10秒前
活泼火水发布了新的文献求助10
11秒前
小雒雒发布了新的文献求助10
11秒前
天天快乐应助Luck7采纳,获得10
12秒前
木子完成签到,获得积分10
12秒前
CodeCraft应助思思采纳,获得10
13秒前
allzzwell完成签到 ,获得积分10
13秒前
13秒前
muyeliu2024发布了新的文献求助10
14秒前
15秒前
酷波er应助kun采纳,获得10
16秒前
外向梨愁发布了新的文献求助10
16秒前
17秒前
17秒前
chrysan发布了新的文献求助10
18秒前
桃子完成签到,获得积分20
19秒前
小二郎应助muyeliu2024采纳,获得10
20秒前
20秒前
22秒前
wanci应助活泼火水采纳,获得10
22秒前
breeze发布了新的文献求助10
23秒前
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 480
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3290092
求助须知:如何正确求助?哪些是违规求助? 2926813
关于积分的说明 8429456
捐赠科研通 2598183
什么是DOI,文献DOI怎么找? 1417748
科研通“疑难数据库(出版商)”最低求助积分说明 659843
邀请新用户注册赠送积分活动 642260