Deep learning-based framework for city-scale rooftop solar potential estimation by considering roof superstructures

屋顶 比例(比率) 建筑工程 估计 土木工程 环境科学 计算机科学 工程类 地理 地图学 系统工程
作者
Qingyu Li,Sebastian Krapf,Lichao Mou,Yilei Shi,Xiao Xiang Zhu
出处
期刊:Applied Energy [Elsevier]
卷期号:374: 123839-123839
标识
DOI:10.1016/j.apenergy.2024.123839
摘要

Solar energy is an environmentally friendly energy source. Identifying suitable rooftops for solar panel installation contributes to not only sustainable energy plans but also carbon neutrality goals. Aerial imagery, bolstered by its growing availability, is a cost-effective data source for rooftop solar potential assessment at large scale. Existing studies generally do not take roof superstructures into account when determining how many solar panels can be installed. This procedure will lead to an overestimation of solar potential. Only several works have considered this issue, but none have devised a network that can simultaneously learn roof orientations and roof superstructures. Therefore, we devise SolarNet+, a novel framework to improve the precision of rooftop solar potential estimation. After implementing SolarNet+ on a benchmark dataset, we find that SolarNet+ outperforms other state-of-the-art approaches in both tasks — roof orientations and roof superstructure segmentation. Moreover, the SolarNet+ framework enables rooftop solar estimation at large-scale applications for investigating the correlation between urban rooftop solar potential and various local climate zone (LCZ) types. The results in the city of Brussels reveal that three specific LCZ urban types exhibit the highest rooftop solar potential efficiency: compact highrise (LCZ1), compact midrise (LCZ2), and heavy industry (LCZ10). The annual photovoltaic potential for these LCZ types is reported as 10.56 GWh/year/km2, 11.77 GWh/year/km2, and 10.70 GWh/year/km2, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诚c发布了新的文献求助100
刚刚
sxr完成签到,获得积分10
1秒前
1秒前
斯文明杰发布了新的文献求助10
1秒前
1秒前
3秒前
3秒前
3秒前
Ann发布了新的文献求助10
4秒前
陈陈陈完成签到,获得积分10
4秒前
4秒前
5秒前
不舍天真发布了新的文献求助10
5秒前
5秒前
H1发布了新的文献求助10
5秒前
6秒前
完美世界应助飞夜采纳,获得10
6秒前
未来发布了新的文献求助10
6秒前
WWXWWX应助cruise采纳,获得10
6秒前
7秒前
安静大树发布了新的文献求助10
8秒前
8秒前
9秒前
jiajia666发布了新的文献求助10
9秒前
斯文明杰完成签到,获得积分10
11秒前
shiz花生完成签到,获得积分10
11秒前
HJJHJH发布了新的文献求助30
11秒前
大炮台发布了新的文献求助10
11秒前
11秒前
12秒前
张佳浩完成签到,获得积分10
13秒前
我是老大应助爱吃泡芙采纳,获得10
15秒前
Ted完成签到,获得积分10
15秒前
SciGPT应助老陈采纳,获得10
16秒前
英姑应助HJJHJH采纳,获得10
17秒前
17秒前
Jasmine发布了新的文献求助10
17秒前
mei发布了新的文献求助10
18秒前
哈哈哈哈完成签到,获得积分10
18秒前
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454789
求助须知:如何正确求助?哪些是违规求助? 3049989
关于积分的说明 9020079
捐赠科研通 2738731
什么是DOI,文献DOI怎么找? 1502219
科研通“疑难数据库(出版商)”最低求助积分说明 694453
邀请新用户注册赠送积分活动 693143