Deep learning-based framework for city-scale rooftop solar potential estimation by considering roof superstructures

屋顶 比例(比率) 建筑工程 估计 土木工程 环境科学 计算机科学 工程类 地理 地图学 系统工程
作者
Qingyu Li,Sebastian Krapf,Lichao Mou,Yilei Shi,Xiao Xiang Zhu
出处
期刊:Applied Energy [Elsevier]
卷期号:374: 123839-123839
标识
DOI:10.1016/j.apenergy.2024.123839
摘要

Solar energy is an environmentally friendly energy source. Identifying suitable rooftops for solar panel installation contributes to not only sustainable energy plans but also carbon neutrality goals. Aerial imagery, bolstered by its growing availability, is a cost-effective data source for rooftop solar potential assessment at large scale. Existing studies generally do not take roof superstructures into account when determining how many solar panels can be installed. This procedure will lead to an overestimation of solar potential. Only several works have considered this issue, but none have devised a network that can simultaneously learn roof orientations and roof superstructures. Therefore, we devise SolarNet+, a novel framework to improve the precision of rooftop solar potential estimation. After implementing SolarNet+ on a benchmark dataset, we find that SolarNet+ outperforms other state-of-the-art approaches in both tasks — roof orientations and roof superstructure segmentation. Moreover, the SolarNet+ framework enables rooftop solar estimation at large-scale applications for investigating the correlation between urban rooftop solar potential and various local climate zone (LCZ) types. The results in the city of Brussels reveal that three specific LCZ urban types exhibit the highest rooftop solar potential efficiency: compact highrise (LCZ1), compact midrise (LCZ2), and heavy industry (LCZ10). The annual photovoltaic potential for these LCZ types is reported as 10.56 GWh/year/km2, 11.77 GWh/year/km2, and 10.70 GWh/year/km2, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助安静问晴采纳,获得10
刚刚
刚刚
深情安青应助shishi采纳,获得10
刚刚
脑洞疼应助俏皮的冬云采纳,获得10
刚刚
追寻冬日发布了新的文献求助10
刚刚
忧伤的初露完成签到,获得积分10
刚刚
酷波er应助2589采纳,获得10
刚刚
1秒前
善学以致用应助太阳XIX采纳,获得10
1秒前
hn完成签到,获得积分20
2秒前
笨笨山芙应助zys2001mezy采纳,获得10
2秒前
2秒前
2秒前
2秒前
研友_n0GBAL发布了新的文献求助10
3秒前
3秒前
3秒前
沐风发布了新的文献求助30
5秒前
阮楷瑞发布了新的文献求助10
5秒前
Molly0303发布了新的文献求助10
5秒前
Leo发布了新的文献求助10
5秒前
kokp完成签到,获得积分10
6秒前
ziheng发布了新的文献求助10
6秒前
shihshi发布了新的文献求助10
6秒前
Candy完成签到,获得积分10
6秒前
6秒前
dream发布了新的文献求助10
7秒前
7秒前
士大夫完成签到,获得积分10
7秒前
xiuxiu_27发布了新的文献求助10
7秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
Jbiolover应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
Jbiolover应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得30
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
赘婿应助科研通管家采纳,获得30
8秒前
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751577
求助须知:如何正确求助?哪些是违规求助? 5469081
关于积分的说明 15370428
捐赠科研通 4890701
什么是DOI,文献DOI怎么找? 2629836
邀请新用户注册赠送积分活动 1578067
关于科研通互助平台的介绍 1534214