A Large-Scale Sensitivity Analysis on Latent Embeddings and Dimensionality Reductions for Text Spatializations

计算机科学 维数之咒 灵敏度(控制系统) 比例(比率) 数据可视化 可视化 人工智能 物理 电子工程 工程类 量子力学
作者
Daniel Atzberger,Tim Cech,Willy Scheibel,Jürgen Döllner,Michael Behrisch,Tobias Schreck
出处
期刊:IEEE Transactions on Visualization and Computer Graphics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/tvcg.2024.3456308
摘要

The semantic similarity between documents of a text corpus can be visualized using map-like metaphors based on twodimensional scatterplot layouts. These layouts result from a dimensionality reduction on the document-term matrix or a representation within a latent embedding, including topic models. Thereby, the resulting layout depends on the input data and hyperparameters of the dimensionality reduction and is therefore affected by changes in them. Furthermore, the resulting layout is affected by changes in the input data and hyperparameters of the dimensionality reduction. However, such changes to the layout require additional cognitive efforts from the user. In this work, we present a sensitivity study that analyzes the stability of these layouts concerning (1) changes in the text corpora, (2) changes in the hyperparameter, and (3) randomness in the initialization. Our approach has two stages: data measurement and data analysis. First, we derived layouts for the combination of three text corpora and six text embeddings and a grid-search-inspired hyperparameter selection of the dimensionality reductions. Afterward, we quantified the similarity of the layouts through ten metrics, concerning local and global structures and class separation. Second, we analyzed the resulting 42 817 tabular data points in a descriptive statistical analysis. From this, we derived guidelines for informed decisions on the layout algorithm and highlight specific hyperparameter settings. We provide our implementation as a Git repository at hpicgs/Topic-Models-and-DimensionalityReduction-Sensitivity-Study and results as Zenodo archive at DOI:10.5281/zenodo.12772898.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迟迟发布了新的文献求助10
1秒前
优雅亦绿发布了新的文献求助30
3秒前
ding应助柳叶小弯刀采纳,获得10
4秒前
4秒前
科研通AI5应助欢喜念双采纳,获得10
5秒前
6秒前
师德发布了新的文献求助10
6秒前
顾阿途完成签到 ,获得积分10
6秒前
zhang完成签到,获得积分10
8秒前
9秒前
10秒前
CJ完成签到,获得积分10
10秒前
库库写论文完成签到,获得积分10
10秒前
ww完成签到,获得积分20
11秒前
垃圾完成签到,获得积分10
12秒前
李胜发布了新的文献求助10
12秒前
12秒前
zyq发布了新的文献求助10
14秒前
完美世界应助LIKUN采纳,获得10
15秒前
研友_Lw4Ngn发布了新的文献求助10
16秒前
LJ发布了新的文献求助10
17秒前
xQcQn发布了新的文献求助10
17秒前
独特的夜阑完成签到 ,获得积分10
17秒前
18秒前
20秒前
大美美完成签到,获得积分10
21秒前
科目三应助研友_Lw4Ngn采纳,获得10
21秒前
852应助highting采纳,获得10
23秒前
24秒前
smy发布了新的文献求助30
24秒前
周周应助忐忑的远山采纳,获得20
25秒前
xQcQn完成签到,获得积分10
25秒前
jimlau完成签到,获得积分10
26秒前
28秒前
linxi发布了新的文献求助10
29秒前
ding应助zyq采纳,获得30
29秒前
30秒前
30秒前
30秒前
无情的纸飞机完成签到,获得积分10
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668063
求助须知:如何正确求助?哪些是违规求助? 3226515
关于积分的说明 9769764
捐赠科研通 2936459
什么是DOI,文献DOI怎么找? 1608572
邀请新用户注册赠送积分活动 759665
科研通“疑难数据库(出版商)”最低求助积分说明 735460