Identification of microbe–disease signed associations via multi-scale variational graph autoencoder based on signed message propagation

生物 自编码 鉴定(生物学) 计算生物学 比例(比率) 图形 生物信息学 人工智能 理论计算机科学 计算机科学 人工神经网络 生态学 地图学 地理
作者
Huan Zhu,Hongxia Hao,Liang Yu
出处
期刊:BMC Biology [BioMed Central]
卷期号:22 (1) 被引量:1
标识
DOI:10.1186/s12915-024-01968-0
摘要

Plenty of clinical and biomedical research has unequivocally highlighted the tremendous significance of the human microbiome in relation to human health. Identifying microbes associated with diseases is crucial for early disease diagnosis and advancing precision medicine. Considering that the information about changes in microbial quantities under fine-grained disease states helps to enhance a comprehensive understanding of the overall data distribution, this study introduces MSignVGAE, a framework for predicting microbe-disease sign associations using signed message propagation. MSignVGAE employs a graph variational autoencoder to model noisy signed association data and extends the multi-scale concept to enhance representation capabilities. A novel strategy for propagating signed message in signed networks addresses heterogeneity and consistency among nodes connected by signed edges. Additionally, we utilize the idea of denoising autoencoder to handle the noise in similarity feature information, which helps overcome biases in the fused similarity data. MSignVGAE represents microbe-disease associations as a heterogeneous graph using similarity information as node features. The multi-class classifier XGBoost is utilized to predict sign associations between diseases and microbes. MSignVGAE achieves AUROC and AUPR values of 0.9742 and 0.9601, respectively. Case studies on three diseases demonstrate that MSignVGAE can effectively capture a comprehensive distribution of associations by leveraging signed information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wfwl完成签到,获得积分10
1秒前
欣喜机器猫完成签到,获得积分10
1秒前
3秒前
青衣北风发布了新的文献求助10
3秒前
wfwl发布了新的文献求助10
3秒前
6秒前
shan完成签到,获得积分10
6秒前
7秒前
全员CEO完成签到,获得积分10
7秒前
8秒前
8秒前
李健的粉丝团团长应助nn采纳,获得10
9秒前
9秒前
yx_cheng应助自觉背包采纳,获得30
9秒前
完美世界应助aiueo采纳,获得10
10秒前
LLL完成签到,获得积分10
12秒前
16秒前
16秒前
ZY完成签到,获得积分10
16秒前
失眠朋友完成签到,获得积分10
17秒前
18秒前
mavissss发布了新的文献求助10
19秒前
20秒前
27完成签到,获得积分20
20秒前
123完成签到,获得积分10
20秒前
22秒前
24秒前
nkmenghan完成签到,获得积分10
24秒前
25秒前
aiueo发布了新的文献求助10
27秒前
念姬发布了新的文献求助10
28秒前
29秒前
田様应助mavissss采纳,获得10
29秒前
123发布了新的文献求助10
29秒前
infinite完成签到,获得积分10
29秒前
30秒前
Orange应助ruann采纳,获得10
30秒前
32秒前
英勇真发布了新的文献求助10
33秒前
ltx完成签到,获得积分10
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967152
求助须知:如何正确求助?哪些是违规求助? 3512481
关于积分的说明 11163524
捐赠科研通 3247421
什么是DOI,文献DOI怎么找? 1793805
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804450