A hybrid interval‐valued time series prediction model incorporating intuitionistic fuzzy cognitive map and fuzzy neural network

模糊认知图 区间(图论) 计算机科学 系列(地层学) 数学 模糊逻辑 粒子群优化 人工智能 算法 数学优化 数据挖掘 模糊集 模糊数 古生物学 组合数学 生物
作者
Jiajia Zhang,Zhifu Tao,Jinpei Liu,Xi Liu,Huayou Chen
出处
期刊:Journal of Forecasting [Wiley]
卷期号:44 (1): 93-111
标识
DOI:10.1002/for.3181
摘要

Abstract The definition of interval‐valued time series is now a valid tool that can be used to model uncertainty with known numerical bounds. However, how to provide accurate predictions of interval‐valued time series remains an open problem. The goal of this paper is to develop a hybrid interval‐valued time series prediction model that incorporates an intuitionistic fuzzy cognitive map and a fuzzy neural network. The causal relationship and adjacency matrix among nodes of the intuitionistic fuzzy cognitive map are defined and quantified using mutual subsethhood, in which the hesitation weight is added to the connection weight among concept nodes. The approach directly constructs concept nodes and a weight matrix for automatic recognition of intuitionistic fuzzy cognitive maps from original sequence data and combines the particle swarm optimization algorithm and back propagation algorithm to run with less manual intervention. The confidence intervals of forecasted interval values are also discussed. The developed prediction model is applied to forecast interval‐valued financial time series (i.e., the Nasdaq‐100 stock index), which is composed of daily minimum price and maximum price. The feasibility and validity of the proposed developed prediction model are shown through comparisons with some existing prediction models on interval‐valued time series.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
田様应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得30
1秒前
MchemG应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得30
1秒前
田様应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
2秒前
桐桐应助lizhaonian采纳,获得10
2秒前
LiH完成签到,获得积分10
4秒前
4秒前
研友_ngX12Z完成签到,获得积分10
5秒前
平常的毛豆应助阿巴阿巴采纳,获得10
6秒前
6秒前
6秒前
6秒前
12345完成签到,获得积分10
6秒前
苏苏完成签到,获得积分10
7秒前
无花果应助李默庵啊采纳,获得10
7秒前
7秒前
9秒前
鲜于冰彤发布了新的文献求助10
10秒前
10秒前
bkagyin应助可乐采纳,获得10
12秒前
南歌子完成签到 ,获得积分10
12秒前
Lucas应助Jolin采纳,获得10
14秒前
14秒前
14秒前
盐焗小鱼饼完成签到 ,获得积分10
14秒前
安详立果发布了新的文献求助10
15秒前
zzcres发布了新的文献求助10
15秒前
赘婿应助鲜于冰彤采纳,获得10
20秒前
李爱国应助坚强的咖啡豆采纳,获得10
21秒前
斯寜给Sweet的求助进行了留言
22秒前
22秒前
23秒前
刘燕发布了新的文献求助10
24秒前
顾矜应助秋秋秋采纳,获得10
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3766835
求助须知:如何正确求助?哪些是违规求助? 3311263
关于积分的说明 10157879
捐赠科研通 3026311
什么是DOI,文献DOI怎么找? 1661080
邀请新用户注册赠送积分活动 793853
科研通“疑难数据库(出版商)”最低求助积分说明 755841