气凝胶
材料科学
压阻效应
压力传感器
纳米技术
化学工程
复合材料
机械工程
工程类
作者
Lu Han,Hongtao Zhu,Junhuang Xu,Xuejun Lai,Xingrong Zeng,Hongqiang Li
标识
DOI:10.1016/j.cej.2024.154868
摘要
The rapid growth of wearable electronics, healthcare monitoring, and human–computer interaction has sparked growing interest in flexible piezoresistive pressure sensors, which in turn raised considerable concerns about the increasingly serious environmental pollution caused by electronic waste. Herein, a radial inward directional freezing-drying method was proposed to prepare biobased, degradable and directional porous carboxymethyl chitosan/lignosulfonate sodium aerogel with dual-conductive network constructed by carboxylated multiwalled carbon nanotubes (C-CNTs) and MXene for piezoresistive pressure sensor. Owing to the synergistic conductive network of C-CNTs and MXene as well as directional porous structure, the sensor exhibited high sensitivity (2.33 kPa−1 in 0–10 kPa, 1.04 kPa−1 in 10–31 kPa, 0.53 kPa−1 in 31–53 kPa), fast response (response/recovery time of 140/60 ms), and excellent repeatability (2,000 loading–unloading cycles). Moreover, the sensor was successfully applied for human motion detection, healthy monitoring, micro-expression identification, and speech recognition. In addition, the aerogel for sensor was able to be completely degraded within 70 h in 1 M hydrochloric acid solution or partially degraded in boiling water within 2.5 h for the recycling of conductive materials, which was beneficial for not only environment protection but also saving resource. Our findings conceivably stand out as a new strategy to prepare environmentally friendly and high-performance piezoresistive pressure sensor and will promote the further development and application of flexible electronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI