Labeled-to-unlabeled distribution alignment for partially-supervised multi-organ medical image segmentation

人工智能 计算机科学 模式识别(心理学) 分割 标记数据 判别式 像素 分类器(UML) 水准点(测量) 大地测量学 地理
作者
X.H. Jiang,Dong Zhang,Xiang Li,Kangyi Liu,Kwang‐Ting Cheng,Xin Yang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:99: 103333-103333
标识
DOI:10.1016/j.media.2024.103333
摘要

Partially-supervised multi-organ medical image segmentation aims to develop a unified semantic segmentation model by utilizing multiple partially-labeled datasets, with each dataset providing labels for a single class of organs. However, the limited availability of labeled foreground organs and the absence of supervision to distinguish unlabeled foreground organs from the background pose a significant challenge, which leads to a distribution mismatch between labeled and unlabeled pixels. Although existing pseudo-labeling methods can be employed to learn from both labeled and unlabeled pixels, they are prone to performance degradation in this task, as they rely on the assumption that labeled and unlabeled pixels have the same distribution. In this paper, to address the problem of distribution mismatch, we propose a labeled-to-unlabeled distribution alignment (LTUDA) framework that aligns feature distributions and enhances discriminative capability. Specifically, we introduce a cross-set data augmentation strategy, which performs region-level mixing between labeled and unlabeled organs to reduce distribution discrepancy and enrich the training set. Besides, we propose a prototype-based distribution alignment method that implicitly reduces intra-class variation and increases the separation between the unlabeled foreground and background. This can be achieved by encouraging consistency between the outputs of two prototype classifiers and a linear classifier. Extensive experimental results on the AbdomenCT-1K dataset and a union of four benchmark datasets (including LiTS, MSD-Spleen, KiTS, and NIH82) demonstrate that our method outperforms the state-of-the-art partially-supervised methods by a considerable margin, and even surpasses the fully-supervised methods. The source code is publicly available at LTUDA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助寒冷的断秋采纳,获得10
刚刚
Pocketter发布了新的文献求助10
刚刚
1秒前
1秒前
施耐德完成签到,获得积分10
2秒前
冯冯完成签到 ,获得积分10
2秒前
solveing完成签到,获得积分10
2秒前
book完成签到,获得积分10
4秒前
李钧鹏完成签到,获得积分10
4秒前
孔不尤发布了新的文献求助30
4秒前
自豪的樱桃完成签到,获得积分10
8秒前
8秒前
大咸鱼完成签到,获得积分10
9秒前
aaaaaa完成签到,获得积分10
9秒前
10秒前
10秒前
老肥发布了新的文献求助10
10秒前
10秒前
12秒前
田様应助如意的听云采纳,获得10
12秒前
zhangyu应助那种采纳,获得10
13秒前
兴奋小丸子完成签到,获得积分10
13秒前
于水清发布了新的文献求助10
14秒前
陈卓完成签到,获得积分10
14秒前
小二郎应助solveing采纳,获得10
14秒前
延续完成签到,获得积分20
14秒前
know发布了新的文献求助10
15秒前
15秒前
15秒前
健壮保温杯完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
xy小侠女完成签到,获得积分10
18秒前
阿氏之光发布了新的文献求助10
18秒前
18秒前
思源应助萝卜采纳,获得10
19秒前
lalala完成签到,获得积分10
20秒前
斯文败类应助樱桃小王子采纳,获得10
21秒前
科研通AI2S应助Tina采纳,获得10
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998315
求助须知:如何正确求助?哪些是违规求助? 3537823
关于积分的说明 11272560
捐赠科研通 3276885
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883778
科研通“疑难数据库(出版商)”最低求助积分说明 810014