Machine learning approach to predict blood-secretory proteins and potential biomarkers for liver cancer using omics data

转录组 生物标志物 计算生物学 基因 生物 分泌蛋白 癌症生物标志物 逻辑回归 生物信息学 组学 癌症 医学 内科学 基因表达 遗传学
作者
Dahrii Paul,Vigneshwar Suriya Prakash Sinnarasan,Rajesh Das,Md Mujibur Rahman Sheikh,Amouda Venkatesan
出处
期刊:Journal of Proteomics [Elsevier]
卷期号:309: 105298-105298
标识
DOI:10.1016/j.jprot.2024.105298
摘要

Identifying non-invasive blood-based biomarkers is crucial for early detection and monitoring of liver cancer (LC), thereby improving patient outcomes. This study leveraged computational approaches to predict potential blood-based biomarkers for LC. Machine learning (ML) models were developed using selected features from blood-secretory proteins collected from the curated databases. The logistic regression (LR) model demonstrated the optimal performance. Transcriptome analysis across 7 LC cohorts revealed 231 common differentially expressed genes (DEGs). The encoded proteins of these DEGs were compared with the ML dataset, revealing 29 proteins overlapping with the blood-secretory dataset. The LR model also predicted 29 additional proteins as blood-secretory with the remaining protein-coding genes. As a result, 58 potential blood-secretory proteins were obtained. Among the top 20 genes, 13 common hub genes were identified. Further, area under the receiver operating characteristic curve (ROC AUC) analysis was performed to assess the genes as potential diagnostic blood biomarkers. Six genes, ESM1, FCN2, MDK, GPC3, CTHRC1 and COL6A6, exhibited an AUC value higher than 0.85 and were predicted as blood-secretory. This study highlights the potential of an integrative computational approach for discovering non-invasive blood-based biomarkers in LC, facilitating for further validation and clinical translation. SIGNIFICANCE: Liver cancer is one of the leading causes of premature death worldwide, with its prevalence and mortality rates projected to increase. Although current diagnostic methods are highly sensitive, they are invasive and unsuitable for repeated testing. Blood biomarkers offer a promising non-invasive alternative, but their wide dynamic range of protein concentration poses experimental challenges. Therefore, utilizing available omics data to develop a diagnostic model could provide a potential solution for accurate diagnosis. This study developed a computational method integrating machine learning and bioinformatics analysis to identify potential blood biomarkers. As a result, ESM1, FCN2, MDK, GPC3, CTHRC1 and COL6A6 biomarkers were identified, holding significant promise for improving diagnosis and understanding of liver cancer. The integrated method can be applied to other cancers, offering a possible solution for early detection and improved patient outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11完成签到,获得积分10
刚刚
scq发布了新的文献求助10
刚刚
科研通AI2S应助qiao采纳,获得10
刚刚
刚刚
2233发布了新的文献求助10
3秒前
4秒前
5秒前
田様应助jjhh采纳,获得10
5秒前
谦让的小姜应助橙c美式采纳,获得10
5秒前
6秒前
所所应助拖拖沓沓ttt采纳,获得10
6秒前
丘比特应助fff采纳,获得10
6秒前
共享精神应助vy采纳,获得30
7秒前
7秒前
xiuwen发布了新的文献求助10
8秒前
8秒前
sweetsbt完成签到,获得积分10
8秒前
空空完成签到,获得积分10
8秒前
9秒前
大贺呀发布了新的文献求助10
10秒前
ccc完成签到,获得积分10
10秒前
10秒前
luckinstar发布了新的文献求助10
11秒前
11秒前
lsw发布了新的文献求助10
12秒前
12秒前
12秒前
梦想去广州当靓仔完成签到 ,获得积分10
13秒前
13秒前
marxing完成签到,获得积分10
13秒前
14秒前
orixero应助A_Brute采纳,获得10
15秒前
16秒前
两栖玩家发布了新的文献求助10
16秒前
两栖玩家发布了新的文献求助10
16秒前
两栖玩家发布了新的文献求助10
16秒前
两栖玩家发布了新的文献求助10
16秒前
大贺呀完成签到,获得积分10
17秒前
17秒前
zoey完成签到,获得积分20
17秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233445
求助须知:如何正确求助?哪些是违规求助? 2879969
关于积分的说明 8213423
捐赠科研通 2547415
什么是DOI,文献DOI怎么找? 1376927
科研通“疑难数据库(出版商)”最低求助积分说明 647713
邀请新用户注册赠送积分活动 623150