Co-adsorbed self-assembled monolayer enables high-performance perovskite and organic solar cells

单层 钙钛矿(结构) 吸附 材料科学 自组装单层膜 有机太阳能电池 纳米技术 化学 结晶学 有机化学 复合材料 聚合物
作者
Dongyang Li,Qing Lian,Tao Tang,Ruijie Ma,Heng Liu,Qiong Liang,Yu Han,Guojun Mi,Ouwen Peng,Guihua Zhang,Wenbo Peng,Baomin Xu,Xinhui Lu,Kuan Liu,Jun Yin,Zhiwei Ren,Gang Li,Chun Cheng
出处
期刊:Nature Communications [Springer Nature]
卷期号:15 (1) 被引量:13
标识
DOI:10.1038/s41467-024-51760-5
摘要

Self-assembled monolayers (SAMs) have become pivotal in achieving high-performance perovskite solar cells (PSCs) and organic solar cells (OSCs) by significantly minimizing interfacial energy losses. In this study, we propose a co-adsorb (CA) strategy employing a novel small molecule, 2-chloro-5-(trifluoromethyl)isonicotinic acid (PyCA-3F), introducing at the buried interface between 2PACz and the perovskite/organic layers. This approach effectively diminishes 2PACz's aggregation, enhancing surface smoothness and increasing work function for the modified SAM layer, thereby providing a flattened buried interface with a favorable heterointerface for perovskite. The resultant improvements in crystallinity, minimized trap states, and augmented hole extraction and transfer capabilities have propelled power conversion efficiencies (PCEs) beyond 25% in PSCs with a p-i-n structure (certified at 24.68%). OSCs employing the CA strategy achieve remarkable PCEs of 19.51% based on PM1:PTQ10:m-BTP-PhC6 photoactive system. Notably, universal improvements have also been achieved for the other two popular OSC systems. After a 1000-hour maximal power point tracking, the encapsulated PSCs and OSCs retain approximately 90% and 80% of their initial PCEs, respectively. This work introduces a facile, rational, and effective method to enhance the performance of SAMs, realizing efficiency breakthroughs in both PSCs and OSCs with a favorable p-i-n device structure, along with improved operational stability. Self-assembled monolayers are essential for achieving high performance solar cells by minimizing interfacial energy losses. Here, authors the develop a co-adsorb strategy with a small molecule to provide a favorable heterointerface, realizing high efficiency in p-i-n perovskite and organic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shirleeyeahe完成签到,获得积分10
1秒前
1秒前
特特雷珀萨努完成签到 ,获得积分10
1秒前
京阿尼完成签到,获得积分10
1秒前
风雨发布了新的文献求助10
1秒前
orixero应助今非采纳,获得10
1秒前
平常的G完成签到,获得积分10
2秒前
2秒前
小石头完成签到,获得积分10
3秒前
3秒前
YL完成签到 ,获得积分10
3秒前
3秒前
上官若男应助整齐路灯采纳,获得10
3秒前
yyj发布了新的文献求助10
3秒前
细腻的麦片完成签到,获得积分20
4秒前
4秒前
君君完成签到,获得积分10
5秒前
cchen0902完成签到,获得积分10
5秒前
Sara发布了新的文献求助10
5秒前
5秒前
干饭闪电狼完成签到,获得积分10
6秒前
YUZU完成签到,获得积分10
7秒前
123完成签到,获得积分10
8秒前
pcx完成签到,获得积分10
8秒前
phd完成签到,获得积分10
9秒前
9秒前
曹志毅完成签到,获得积分10
9秒前
mito发布了新的文献求助10
10秒前
无悔呀发布了新的文献求助10
10秒前
11秒前
君君发布了新的文献求助10
11秒前
Yang完成签到,获得积分10
12秒前
风雨完成签到,获得积分10
12秒前
12秒前
13秒前
彭于晏应助小西采纳,获得30
13秒前
可爱的函函应助布布采纳,获得10
14秒前
15秒前
轩辕德地发布了新的文献求助10
15秒前
nine发布了新的文献求助30
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794