已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic segmentation and diameter measurement of deep medullary veins

体素 分割 人工智能 计算机科学 相似性(几何) 成像体模 模式识别(心理学) 磁共振成像 物理 核磁共振 生物医学工程 图像(数学) 光学 医学 放射科
作者
Yichen Zhou,Bingbing Zhao,Julia Moore,Xiaopeng Zong
出处
期刊:Magnetic Resonance in Medicine [Wiley]
被引量:1
标识
DOI:10.1002/mrm.30341
摘要

Abstract Purpose As one of the pathogenic factors of cerebral small vessel disease, venous collagenosis may result in the occlusion or stenosis of deep medullary veins (DMVs). Although numerous DMVs can be observed in susceptibility‐weighted MRI images, their diameters are usually smaller than the MRI resolution, making it difficult to segment them and quantify their sizes. We aim to automatically segment DMVs and measure their diameters from gradient‐echo images. Methods A neural network model was trained for DMV segmentation based on the gradient‐echo magnitude and phase images of 20 subjects at 7 T. The diameters of DMVs were obtained by fitting measured complex images with model images that accounted for the DMV‐induced magnetic field and point spread function. A phantom study with graphite rods of different diameters was conducted to validate the proposed method. Simulation was carried out to evaluate the voxel‐size dependence of measurement accuracy for a typical DMV size. Results The automatically segmented DMV masks had Dice similarity coefficients of 0.68 ± 0.03 (voxel level) and 0.83 ± 0.04 (cluster level). The fitted graphite‐rod diameters closely matched their true values. In simulation, the fitted diameters closely matched the true value when voxel size was ≤ 0.45 mm, and 92.2% of DMVs had diameters between 90 μm and 200 μm with a peak at about 120 μm, which agreed well with an earlier ex vivo report. Conclusion The proposed methods enabled efficient and quantitative study of DMVs, which may help illuminate the role of DMVs in the etiopathogenesis of cerebral small vessel disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
wang5945完成签到 ,获得积分10
5秒前
zxr发布了新的文献求助10
9秒前
yx_cheng举报可乐666求助涉嫌违规
14秒前
薄荷也完成签到,获得积分10
14秒前
yu完成签到,获得积分10
19秒前
20秒前
陈某完成签到,获得积分10
22秒前
22秒前
26秒前
yikiann发布了新的文献求助30
27秒前
GeC发布了新的文献求助10
27秒前
Owen应助赵银志采纳,获得10
29秒前
lina完成签到,获得积分10
30秒前
MRBBN发布了新的文献求助10
31秒前
iNk应助温暖静柏采纳,获得20
33秒前
传奇3应助冰熊猫心中有光采纳,获得10
34秒前
yikiann完成签到,获得积分20
35秒前
77992完成签到 ,获得积分10
36秒前
39秒前
yaolei完成签到,获得积分10
40秒前
手打鱼丸完成签到 ,获得积分10
42秒前
wlxs发布了新的文献求助10
44秒前
ppg123应助科研通管家采纳,获得10
45秒前
Profeto应助科研通管家采纳,获得10
45秒前
彭于晏应助科研通管家采纳,获得10
45秒前
科研通AI2S应助科研通管家采纳,获得10
45秒前
ppg123应助科研通管家采纳,获得10
45秒前
ppg123应助科研通管家采纳,获得10
46秒前
dong应助科研通管家采纳,获得10
46秒前
Profeto应助科研通管家采纳,获得10
46秒前
zy95282发布了新的文献求助30
47秒前
遗忘完成签到,获得积分10
51秒前
MRBBN完成签到,获得积分10
53秒前
yx_cheng应助zy95282采纳,获得10
54秒前
大模型应助无限冬卉采纳,获得10
54秒前
55秒前
俏皮的老城完成签到 ,获得积分10
55秒前
1分钟前
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994866
求助须知:如何正确求助?哪些是违规求助? 3534988
关于积分的说明 11266966
捐赠科研通 3274824
什么是DOI,文献DOI怎么找? 1806467
邀请新用户注册赠送积分活动 883316
科研通“疑难数据库(出版商)”最低求助积分说明 809762