Automatic segmentation and diameter measurement of deep medullary veins

体素 分割 人工智能 计算机科学 相似性(几何) 成像体模 模式识别(心理学) 磁共振成像 物理 核磁共振 生物医学工程 图像(数学) 光学 医学 放射科
作者
Yichen Zhou,Bingbing Zhao,Julia Moore,Xiaopeng Zong
出处
期刊:Magnetic Resonance in Medicine [Wiley]
标识
DOI:10.1002/mrm.30341
摘要

Abstract Purpose As one of the pathogenic factors of cerebral small vessel disease, venous collagenosis may result in the occlusion or stenosis of deep medullary veins (DMVs). Although numerous DMVs can be observed in susceptibility‐weighted MRI images, their diameters are usually smaller than the MRI resolution, making it difficult to segment them and quantify their sizes. We aim to automatically segment DMVs and measure their diameters from gradient‐echo images. Methods A neural network model was trained for DMV segmentation based on the gradient‐echo magnitude and phase images of 20 subjects at 7 T. The diameters of DMVs were obtained by fitting measured complex images with model images that accounted for the DMV‐induced magnetic field and point spread function. A phantom study with graphite rods of different diameters was conducted to validate the proposed method. Simulation was carried out to evaluate the voxel‐size dependence of measurement accuracy for a typical DMV size. Results The automatically segmented DMV masks had Dice similarity coefficients of 0.68 ± 0.03 (voxel level) and 0.83 ± 0.04 (cluster level). The fitted graphite‐rod diameters closely matched their true values. In simulation, the fitted diameters closely matched the true value when voxel size was ≤ 0.45 mm, and 92.2% of DMVs had diameters between 90 μm and 200 μm with a peak at about 120 μm, which agreed well with an earlier ex vivo report. Conclusion The proposed methods enabled efficient and quantitative study of DMVs, which may help illuminate the role of DMVs in the etiopathogenesis of cerebral small vessel disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助66采纳,获得10
1秒前
跳跃的襄完成签到,获得积分10
2秒前
2秒前
吱吱发布了新的文献求助10
2秒前
hao发布了新的文献求助10
3秒前
芝麻糊发布了新的文献求助10
3秒前
Akim应助Rjy采纳,获得10
4秒前
史超完成签到,获得积分10
4秒前
Adel发布了新的文献求助10
5秒前
栀盎完成签到 ,获得积分10
5秒前
6秒前
调研昵称发布了新的文献求助10
6秒前
xhui1113完成签到 ,获得积分10
7秒前
7秒前
heolmes应助杰Sir采纳,获得10
7秒前
7秒前
Akim应助lxlcx采纳,获得10
7秒前
程宝贝完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
江子骞完成签到 ,获得积分10
8秒前
miuu发布了新的文献求助10
9秒前
在水一方应助稳重秋寒采纳,获得10
9秒前
Jason完成签到,获得积分10
9秒前
9秒前
清嘉完成签到,获得积分10
10秒前
qly完成签到,获得积分20
10秒前
ysf发布了新的文献求助10
11秒前
安静无招发布了新的文献求助10
11秒前
机智傀斗完成签到,获得积分10
11秒前
大模型应助外向毛巾采纳,获得10
12秒前
12秒前
所所应助111采纳,获得10
12秒前
12秒前
Muy发布了新的文献求助10
12秒前
13秒前
YJL完成签到,获得积分10
13秒前
健康快乐完成签到,获得积分10
13秒前
miuu完成签到,获得积分10
14秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167852
求助须知:如何正确求助?哪些是违规求助? 2819220
关于积分的说明 7925634
捐赠科研通 2479112
什么是DOI,文献DOI怎么找? 1320642
科研通“疑难数据库(出版商)”最低求助积分说明 632856
版权声明 602443