CASH via Optimal Diversity for Ensemble Learning

机器学习 集成学习 计算机科学 贝叶斯优化 超参数 人工智能 一般化 成对比较 贝叶斯概率 数学 数学分析
作者
Pranav Poduval,Sanjay Kumar Patnala,Gaurav Oberoi,Nitish Srivasatava,Siddhartha Asthana
标识
DOI:10.1145/3637528.3671894
摘要

The Combined Algorithm Selection and Hyperparameter Optimization (CASH) problem is pivotal in Automatic Machine Learning (AutoML). Most leading approaches combine Bayesian optimization with post-hoc ensemble building to create advanced AutoML systems. Bayesian optimization (BO) typically focuses on identifying a singular algorithm and its hyperparameters that outperform all other configurations. Recent developments have highlighted an oversight in prior CASH methods: the lack of consideration for diversity among the base learners of the ensemble. This oversight was overcome by explicitly injecting the search for diversity into the traditional CASH problem. However, despite recent developments, BO's limitation lies in its inability to directly optimize ensemble generalization error, offering no theoretical assurance that increased diversity correlates with enhanced ensemble performance. Our research addresses this gap by establishing a theoretical foundation that integrates diversity into the core of BO for direct ensemble learning. We explore a theoretically sound framework that describes the relationship between pair-wise diversity and ensemble performance, which allows our Bayesian optimization framework Optimal Diversity Bayesian Optimization (OptDivBO) to directly and efficiently minimize ensemble generalization error. OptDivBO guarantees an optimal balance between pairwise diversity and individual model performance, setting a new precedent in ensemble learning within CASH. Empirical results on 20 public datasets show that OptDivBO achieves the best average test ranks of 1.57 and 1.4 in classification and regression tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千跃完成签到,获得积分10
刚刚
阿甲发布了新的文献求助10
刚刚
1秒前
隐形曼青应助Jiatu_Li采纳,获得10
1秒前
钟鸿盛Domi发布了新的文献求助10
3秒前
eros发布了新的文献求助10
4秒前
NexusExplorer应助泽锦臻采纳,获得10
7秒前
koh完成签到,获得积分10
7秒前
10秒前
子陵发布了新的文献求助10
11秒前
12秒前
13秒前
15秒前
淡定飞鸟发布了新的文献求助10
15秒前
15秒前
16秒前
PDIF-CN2完成签到,获得积分10
17秒前
ShengzhangLiu发布了新的文献求助10
17秒前
泽锦臻发布了新的文献求助10
18秒前
大白完成签到,获得积分10
19秒前
Ade阿德发布了新的文献求助10
20秒前
20秒前
搞怪书兰发布了新的文献求助10
21秒前
22秒前
GingerF应助CEN采纳,获得50
23秒前
26秒前
28秒前
Mmc发布了新的文献求助10
28秒前
加油发布了新的文献求助10
28秒前
33秒前
何佳完成签到,获得积分10
34秒前
NexusExplorer应助V_I_G采纳,获得10
38秒前
orixero应助ttttt采纳,获得10
38秒前
38秒前
研友_Y59785应助何佳采纳,获得10
40秒前
40秒前
酷波er应助不安的chen采纳,获得10
40秒前
song发布了新的文献求助10
41秒前
wushengdeyu完成签到,获得积分10
41秒前
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991903
求助须知:如何正确求助?哪些是违规求助? 3533023
关于积分的说明 11260405
捐赠科研通 3272329
什么是DOI,文献DOI怎么找? 1805693
邀请新用户注册赠送积分活动 882626
科研通“疑难数据库(出版商)”最低求助积分说明 809425