清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

CASH via Optimal Diversity for Ensemble Learning

机器学习 集成学习 计算机科学 贝叶斯优化 超参数 人工智能 一般化 成对比较 贝叶斯概率 数学 数学分析
作者
Pranav Poduval,Sanjay Kumar Patnala,Gaurav Oberoi,Nitish Srivasatava,Siddhartha Asthana
标识
DOI:10.1145/3637528.3671894
摘要

The Combined Algorithm Selection and Hyperparameter Optimization (CASH) problem is pivotal in Automatic Machine Learning (AutoML). Most leading approaches combine Bayesian optimization with post-hoc ensemble building to create advanced AutoML systems. Bayesian optimization (BO) typically focuses on identifying a singular algorithm and its hyperparameters that outperform all other configurations. Recent developments have highlighted an oversight in prior CASH methods: the lack of consideration for diversity among the base learners of the ensemble. This oversight was overcome by explicitly injecting the search for diversity into the traditional CASH problem. However, despite recent developments, BO's limitation lies in its inability to directly optimize ensemble generalization error, offering no theoretical assurance that increased diversity correlates with enhanced ensemble performance. Our research addresses this gap by establishing a theoretical foundation that integrates diversity into the core of BO for direct ensemble learning. We explore a theoretically sound framework that describes the relationship between pair-wise diversity and ensemble performance, which allows our Bayesian optimization framework Optimal Diversity Bayesian Optimization (OptDivBO) to directly and efficiently minimize ensemble generalization error. OptDivBO guarantees an optimal balance between pairwise diversity and individual model performance, setting a new precedent in ensemble learning within CASH. Empirical results on 20 public datasets show that OptDivBO achieves the best average test ranks of 1.57 and 1.4 in classification and regression tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
拼搏问薇完成签到 ,获得积分10
12秒前
13秒前
20秒前
35秒前
supermaltose完成签到,获得积分10
40秒前
40秒前
yyds完成签到,获得积分0
40秒前
52秒前
55秒前
科研狗的春天完成签到 ,获得积分10
58秒前
59秒前
1分钟前
1分钟前
輕瘋发布了新的文献求助10
1分钟前
輕瘋完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
葛力完成签到,获得积分10
2分钟前
2分钟前
2分钟前
ZTiamT发布了新的文献求助200
2分钟前
2分钟前
3分钟前
3分钟前
ZTiamT发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
FashionBoy应助忧郁菲鹰采纳,获得30
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732432
求助须知:如何正确求助?哪些是违规求助? 5339270
关于积分的说明 15322228
捐赠科研通 4878002
什么是DOI,文献DOI怎么找? 2620807
邀请新用户注册赠送积分活动 1570003
关于科研通互助平台的介绍 1526689