CASH via Optimal Diversity for Ensemble Learning

机器学习 集成学习 计算机科学 贝叶斯优化 超参数 人工智能 一般化 成对比较 贝叶斯概率 数学 数学分析
作者
Pranav Poduval,Sanjay Kumar Patnala,Gaurav Oberoi,Nitish Srivasatava,Siddhartha Asthana
标识
DOI:10.1145/3637528.3671894
摘要

The Combined Algorithm Selection and Hyperparameter Optimization (CASH) problem is pivotal in Automatic Machine Learning (AutoML). Most leading approaches combine Bayesian optimization with post-hoc ensemble building to create advanced AutoML systems. Bayesian optimization (BO) typically focuses on identifying a singular algorithm and its hyperparameters that outperform all other configurations. Recent developments have highlighted an oversight in prior CASH methods: the lack of consideration for diversity among the base learners of the ensemble. This oversight was overcome by explicitly injecting the search for diversity into the traditional CASH problem. However, despite recent developments, BO's limitation lies in its inability to directly optimize ensemble generalization error, offering no theoretical assurance that increased diversity correlates with enhanced ensemble performance. Our research addresses this gap by establishing a theoretical foundation that integrates diversity into the core of BO for direct ensemble learning. We explore a theoretically sound framework that describes the relationship between pair-wise diversity and ensemble performance, which allows our Bayesian optimization framework Optimal Diversity Bayesian Optimization (OptDivBO) to directly and efficiently minimize ensemble generalization error. OptDivBO guarantees an optimal balance between pairwise diversity and individual model performance, setting a new precedent in ensemble learning within CASH. Empirical results on 20 public datasets show that OptDivBO achieves the best average test ranks of 1.57 and 1.4 in classification and regression tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
其11完成签到,获得积分10
刚刚
脑洞疼应助蛋堡采纳,获得10
刚刚
xuqiansd发布了新的文献求助10
1秒前
我是老大应助西瓜妹采纳,获得10
1秒前
arrebol发布了新的文献求助20
3秒前
3秒前
3秒前
Any发布了新的文献求助10
3秒前
3秒前
4秒前
huishoushen完成签到 ,获得积分10
4秒前
4秒前
思源应助紧张的紫文采纳,获得10
5秒前
ALL完成签到,获得积分10
6秒前
8秒前
赘婿应助xuqiansd采纳,获得10
8秒前
芝诺完成签到,获得积分10
8秒前
陈傲雪发布了新的文献求助10
8秒前
Dr发布了新的文献求助10
8秒前
宁少爷发布了新的文献求助10
9秒前
9秒前
彩彩完成签到,获得积分10
9秒前
阳光香水发布了新的文献求助10
9秒前
10秒前
10秒前
12秒前
13秒前
量子星尘发布了新的文献求助50
14秒前
14秒前
山楂卷关注了科研通微信公众号
14秒前
杨杨杨发布了新的文献求助30
15秒前
烟花应助奖品肉麻膏耶采纳,获得10
16秒前
指数爆炸发布了新的文献求助10
17秒前
mwzeng发布了新的文献求助10
17秒前
赘婿应助ziyiziyi采纳,获得10
17秒前
李慕溪发布了新的文献求助20
17秒前
JACKPAN完成签到,获得积分10
17秒前
西瓜妹发布了新的文献求助10
19秒前
科研通AI5应助身处人海采纳,获得10
20秒前
Hao完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5089378
求助须知:如何正确求助?哪些是违规求助? 4304127
关于积分的说明 13413480
捐赠科研通 4129704
什么是DOI,文献DOI怎么找? 2261721
邀请新用户注册赠送积分活动 1265791
关于科研通互助平台的介绍 1200360