已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CASH via Optimal Diversity for Ensemble Learning

机器学习 集成学习 计算机科学 贝叶斯优化 超参数 人工智能 一般化 成对比较 贝叶斯概率 数学 数学分析
作者
Pranav Poduval,Sanjay Kumar Patnala,Gaurav Oberoi,Nitish Srivasatava,Siddhartha Asthana
标识
DOI:10.1145/3637528.3671894
摘要

The Combined Algorithm Selection and Hyperparameter Optimization (CASH) problem is pivotal in Automatic Machine Learning (AutoML). Most leading approaches combine Bayesian optimization with post-hoc ensemble building to create advanced AutoML systems. Bayesian optimization (BO) typically focuses on identifying a singular algorithm and its hyperparameters that outperform all other configurations. Recent developments have highlighted an oversight in prior CASH methods: the lack of consideration for diversity among the base learners of the ensemble. This oversight was overcome by explicitly injecting the search for diversity into the traditional CASH problem. However, despite recent developments, BO's limitation lies in its inability to directly optimize ensemble generalization error, offering no theoretical assurance that increased diversity correlates with enhanced ensemble performance. Our research addresses this gap by establishing a theoretical foundation that integrates diversity into the core of BO for direct ensemble learning. We explore a theoretically sound framework that describes the relationship between pair-wise diversity and ensemble performance, which allows our Bayesian optimization framework Optimal Diversity Bayesian Optimization (OptDivBO) to directly and efficiently minimize ensemble generalization error. OptDivBO guarantees an optimal balance between pairwise diversity and individual model performance, setting a new precedent in ensemble learning within CASH. Empirical results on 20 public datasets show that OptDivBO achieves the best average test ranks of 1.57 and 1.4 in classification and regression tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
解惑大师完成签到 ,获得积分10
刚刚
1秒前
丘比特应助tt采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
1111完成签到,获得积分10
3秒前
3秒前
鲤角兽完成签到,获得积分10
5秒前
彭于晏应助qiqibaby采纳,获得10
5秒前
8秒前
9秒前
山山完成签到 ,获得积分10
9秒前
一丁雨完成签到,获得积分0
12秒前
002完成签到,获得积分10
13秒前
健壮柚子完成签到 ,获得积分10
13秒前
14秒前
Jenny发布了新的文献求助10
14秒前
zy完成签到,获得积分10
14秒前
15秒前
Verity应助爱睡觉的森森采纳,获得10
15秒前
小孙完成签到,获得积分10
16秒前
zcm1999完成签到,获得积分10
17秒前
星辰大海应助库鲁西采纳,获得10
17秒前
老实的南风完成签到 ,获得积分10
17秒前
小蘑菇应助33采纳,获得10
18秒前
sl完成签到 ,获得积分10
18秒前
临亦完成签到 ,获得积分10
18秒前
充电宝应助XIEQ采纳,获得10
19秒前
tt发布了新的文献求助10
19秒前
小状元完成签到 ,获得积分10
19秒前
20秒前
冷静新烟完成签到,获得积分10
21秒前
L_MD完成签到,获得积分10
21秒前
22秒前
宁宁完成签到,获得积分10
23秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573156
求助须知:如何正确求助?哪些是违规求助? 4659297
关于积分的说明 14724290
捐赠科研通 4599114
什么是DOI,文献DOI怎么找? 2524112
邀请新用户注册赠送积分活动 1494675
关于科研通互助平台的介绍 1464681