A novel-approach for identifying sources of fluvial DOM using fluorescence spectroscopy and machine learning model

溶解有机碳 废水 环境科学 海湾 环境化学 水质 水生生态系统 污水 水文学(农业) 生态系统 污水处理 生态学 化学 环境工程 海洋学 地质学 生物 岩土工程
作者
Dongping Liu,Lei Nie,Beidou Xi,Hongjie Gao,Fang Yang,Huibin Yu
出处
期刊:npj clean water [Nature Portfolio]
卷期号:7 (1) 被引量:1
标识
DOI:10.1038/s41545-024-00370-1
摘要

Rivers are well known as one of the most threatened aquatic environments, whose structure and water quality can be deeply impacted by intensive anthropogenic activities. Despite the fact that anthropogenic influences on river ecosystems could indeed be deduced from the composition and chemistry of fluvial dissolved organic matter (DOM), sources of anthropogenic loading to DOM are still poorly explored. Here, by uniting fluorescence excitation-emission matrices (EEM) and principal component absolute coefficient, four sources of DOM from seventeen rivers in major drainage basins of China could be identified, i.e., originating from municipal sewage, domestic wastewater, livestock wastewater, and natural origins, and thus being defined as MS-DOM, DW-DOM, LW-DOM, NO-DOM, respectively. Based on the random forest model, special nodes in EEM could be traced from four sources, respectively. According to parallel factor analysis, DOM mainly contained protein-like, microbial humic-like, and fulvic-like fluorescence substances, among which protein-like was dominant in MS-DOM and DW-DOM, microbial humic-like in LW-DOM, and fulvic-like in NO-DOM. Based on key peaks and essential nodes in EEM, the identifying source indices were first proposed, which could be introduced to simply distinguish the different anthropogenic-derived sources of fluvial DOM. It was associated with intensity ratios of the key peaks and the essential nodes of EEM spectra from four sources, i.e., municipal sewage (MS-SI: Ex/Em = 280/(335, 410) nm), domestic wastewater (DW-SI: Ex/Em = 280/(340, 410) nm), livestock wastewater (LW-SI: Ex/Em = 235/(345, 380) nm), and natural origins (NO-SI: Ex/Em = 260/(380, 430) nm). By statistical analysis, the high identifying source indices of municipal sewage (>0.5) and natural origins (>0.4) values could be related to MS-DOM and NO-DOM, respectively. The identifying source indices of domestic wastewater with 0.1–0.3 might be linked to DW-DOM and the identifying source indices of livestock wastewater with 0.3–0.4 to LW-DOM. Compared with conventional optical indices, the novel identifying source indices showed remarkable discrimination for the sources of fluvial DOM with different forms of anthropogenic disturbances. Hence the innovative approach could be relatively convenient and accurate to evaluate water quality or pollution risk in river ecosystems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执着谷兰发布了新的文献求助10
刚刚
萧一完成签到,获得积分10
刚刚
1秒前
机灵的觅山完成签到,获得积分20
1秒前
高高雪瑶完成签到,获得积分10
1秒前
杰杰发布了新的文献求助10
1秒前
岳凯完成签到 ,获得积分10
1秒前
Gin发布了新的文献求助10
2秒前
Jasper应助monoklatt采纳,获得10
2秒前
泥踩完成签到,获得积分10
3秒前
Eternitymaria完成签到,获得积分10
4秒前
和光同尘完成签到,获得积分10
4秒前
Avatar完成签到,获得积分10
4秒前
哭泣凌雪完成签到,获得积分10
4秒前
嘻嘻嘻发布了新的文献求助10
5秒前
乐乐应助杰杰采纳,获得10
5秒前
5秒前
6秒前
烟花应助金虎采纳,获得10
6秒前
Nansen完成签到,获得积分10
6秒前
Lucas应助故意的鼠标采纳,获得10
7秒前
7秒前
思源应助千寻采纳,获得10
8秒前
传奇3应助cora采纳,获得10
9秒前
瘦瘦妖妖发布了新的文献求助10
10秒前
11秒前
楚轩发布了新的文献求助10
11秒前
优雅猕猴桃给优雅猕猴桃的求助进行了留言
11秒前
lemongulf完成签到 ,获得积分10
12秒前
FashionBoy应助D.lon采纳,获得10
12秒前
yuruibo发布了新的文献求助10
12秒前
sanch发布了新的文献求助10
12秒前
13秒前
14秒前
诚心爆米花完成签到 ,获得积分10
15秒前
cora完成签到,获得积分10
15秒前
一往如常发布了新的文献求助10
15秒前
DDLDOG发布了新的文献求助30
16秒前
16秒前
monoklatt发布了新的文献求助10
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961973
求助须知:如何正确求助?哪些是违规求助? 3508240
关于积分的说明 11139976
捐赠科研通 3240869
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352