已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Exploring the potential of routine serological markers in predicting neurological outcomes in spinal cord injury

医学 血清学 脊髓损伤 队列 阶段(地层学) 内科学 脊髓 免疫学 精神科 抗体 古生物学 生物
作者
Jacob Matthias,Louis P. Lukas,Sarah C. Brüningk,Doris Maier,Orpheus Mach,Lukas Grassner,John L.K. Kramer,Lucie Bourguignon,Catherine R. Jutzeler
出处
期刊:Experimental Neurology [Elsevier]
卷期号:380: 114918-114918
标识
DOI:10.1016/j.expneurol.2024.114918
摘要

Spinal cord injury (SCI) is a rare condition with a heterogeneous presentation, making the prediction of recovery challenging. However, serological markers have been shown to be associated with severity and long-term recovery following SCI. Therefore, our investigation aimed to assess the feasibility of translating this association into a prediction of the lower extremity motor scores (LEMS) at chronic stage (52 weeks after initial injury) in patients with SCI using routine serological markers. Serological markers, assessed within the initial seven days post-injury in the observational cohort study from the Trauma Hospital Murnau underwent diverse feature engineering approaches. These involved arithmetic measurements such as mean, median, minimum, maximum, and range, as well as considerations of the frequency of marker testing and whether values fell within the normal range. To predict LEMS scores at the chronic stage, eight different regression models (including linear, tree-based, and ensemble models) were used to quantify the predictive value of serological markers relative to a baseline model that relied on the very acute LEMS score and patient age alone. The inclusion of serological markers did not improve the performance of the prediction model. The best-performing approach including serological markers achieved a mean absolute error (MAE) of 6.59 (2.14), which was equivalent to the performance of the baseline model. As an alternative approach, we trained separate models based on the LEMS observed at the very acute stage after injury. Specifically, we considered individuals with an LEMS of 0 or an LEMS exceeding zero separately. This strategy led to a mean improvement in MAE across all cohorts and models, of 1.20 (2.13). We conclude that, in our study, routine serological markers hold limited power for prediction of LEMS. However, the implementation of model stratification by the very acute LEMS markedly enhanced prediction performance. This observation supports the inclusion of clinical knowledge in the modeling of prediction tasks for SCI recovery. Additionally, it lays the path for future research to consider stratified analyses when investigating the predictive power of potential biomarkers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助虚拟的麦片采纳,获得10
刚刚
充电宝应助梦璃安采纳,获得10
刚刚
2007Event完成签到,获得积分10
刚刚
2秒前
五六七发布了新的文献求助10
3秒前
3秒前
yolo完成签到,获得积分10
3秒前
传奇3应助尛瞐慶成采纳,获得10
3秒前
4秒前
cookieMichael发布了新的文献求助30
4秒前
5秒前
hyx-dentist发布了新的文献求助10
5秒前
lxj完成签到,获得积分10
6秒前
6秒前
悦耳一江发布了新的文献求助10
7秒前
丘比特应助米兰小铁匠采纳,获得40
8秒前
8秒前
LI发布了新的文献求助10
9秒前
9秒前
乖乖发布了新的文献求助50
10秒前
于某人发布了新的文献求助10
10秒前
TomatoRin完成签到,获得积分10
11秒前
haapy完成签到 ,获得积分10
11秒前
lxj发布了新的文献求助20
12秒前
ding应助天天采纳,获得10
13秒前
13秒前
桐桐应助hhhhhhhhhhh采纳,获得10
14秒前
于某人完成签到,获得积分10
16秒前
清风拂山岗应助尛瞐慶成采纳,获得10
17秒前
18秒前
19秒前
悦耳一江完成签到,获得积分10
19秒前
所所应助欢呼忆丹采纳,获得10
20秒前
烟花应助灵巧的白山采纳,获得10
21秒前
小二郎应助初昀杭采纳,获得10
22秒前
上官若男应助初昀杭采纳,获得10
22秒前
默默荔枝发布了新的文献求助10
23秒前
23秒前
lzzk完成签到,获得积分10
23秒前
25秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142265
求助须知:如何正确求助?哪些是违规求助? 2793200
关于积分的说明 7805849
捐赠科研通 2449486
什么是DOI,文献DOI怎么找? 1303333
科研通“疑难数据库(出版商)”最低求助积分说明 626823
版权声明 601291