Exploring the potential of routine serological markers in predicting neurological outcomes in spinal cord injury

医学 血清学 脊髓损伤 队列 阶段(地层学) 内科学 脊髓 免疫学 精神科 抗体 古生物学 生物
作者
Jacob Matthias,Louis P. Lukas,Sarah C. Brüningk,Doris Maier,Orpheus Mach,Lukas Grassner,John L.K. Kramer,Lucie Bourguignon,Catherine R. Jutzeler
出处
期刊:Experimental Neurology [Elsevier]
卷期号:380: 114918-114918
标识
DOI:10.1016/j.expneurol.2024.114918
摘要

Spinal cord injury (SCI) is a rare condition with a heterogeneous presentation, making the prediction of recovery challenging. However, serological markers have been shown to be associated with severity and long-term recovery following SCI. Therefore, our investigation aimed to assess the feasibility of translating this association into a prediction of the lower extremity motor scores (LEMS) at chronic stage (52 weeks after initial injury) in patients with SCI using routine serological markers. Serological markers, assessed within the initial seven days post-injury in the observational cohort study from the Trauma Hospital Murnau underwent diverse feature engineering approaches. These involved arithmetic measurements such as mean, median, minimum, maximum, and range, as well as considerations of the frequency of marker testing and whether values fell within the normal range. To predict LEMS scores at the chronic stage, eight different regression models (including linear, tree-based, and ensemble models) were used to quantify the predictive value of serological markers relative to a baseline model that relied on the very acute LEMS score and patient age alone. The inclusion of serological markers did not improve the performance of the prediction model. The best-performing approach including serological markers achieved a mean absolute error (MAE) of 6.59 (2.14), which was equivalent to the performance of the baseline model. As an alternative approach, we trained separate models based on the LEMS observed at the very acute stage after injury. Specifically, we considered individuals with an LEMS of 0 or an LEMS exceeding zero separately. This strategy led to a mean improvement in MAE across all cohorts and models, of 1.20 (2.13). We conclude that, in our study, routine serological markers hold limited power for prediction of LEMS. However, the implementation of model stratification by the very acute LEMS markedly enhanced prediction performance. This observation supports the inclusion of clinical knowledge in the modeling of prediction tasks for SCI recovery. Additionally, it lays the path for future research to consider stratified analyses when investigating the predictive power of potential biomarkers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
木木三发布了新的文献求助10
1秒前
爆米花应助ym采纳,获得10
2秒前
2秒前
3秒前
Michael_li发布了新的文献求助10
3秒前
yi发布了新的文献求助10
3秒前
粉蒸排骨完成签到,获得积分10
3秒前
5秒前
chen应助佩琪小姨采纳,获得10
5秒前
什言完成签到 ,获得积分10
5秒前
5秒前
充电宝应助科研通管家采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
zz应助科研通管家采纳,获得10
6秒前
笨蛋小章应助科研通管家采纳,获得10
6秒前
夕荀发布了新的文献求助10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
逸之狐应助科研通管家采纳,获得10
6秒前
Niki应助科研通管家采纳,获得20
6秒前
浮游应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
ldw完成签到,获得积分10
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
情怀应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得20
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
无极微光应助科研通管家采纳,获得20
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
好运一点应助科研通管家采纳,获得10
7秒前
隐形曼青应助wingmay采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661227
求助须知:如何正确求助?哪些是违规求助? 4837867
关于积分的说明 15094878
捐赠科研通 4819976
什么是DOI,文献DOI怎么找? 2579690
邀请新用户注册赠送积分活动 1533972
关于科研通互助平台的介绍 1492764