Exploring the potential of routine serological markers in predicting neurological outcomes in spinal cord injury

医学 血清学 脊髓损伤 队列 阶段(地层学) 内科学 脊髓 免疫学 精神科 抗体 古生物学 生物
作者
Jacob Matthias,Louis P. Lukas,Sarah C. Brüningk,Doris Maier,Orpheus Mach,Lukas Grassner,John L.K. Kramer,Lucie Bourguignon,Catherine R. Jutzeler
出处
期刊:Experimental Neurology [Elsevier]
卷期号:380: 114918-114918
标识
DOI:10.1016/j.expneurol.2024.114918
摘要

Spinal cord injury (SCI) is a rare condition with a heterogeneous presentation, making the prediction of recovery challenging. However, serological markers have been shown to be associated with severity and long-term recovery following SCI. Therefore, our investigation aimed to assess the feasibility of translating this association into a prediction of the lower extremity motor scores (LEMS) at chronic stage (52 weeks after initial injury) in patients with SCI using routine serological markers. Serological markers, assessed within the initial seven days post-injury in the observational cohort study from the Trauma Hospital Murnau underwent diverse feature engineering approaches. These involved arithmetic measurements such as mean, median, minimum, maximum, and range, as well as considerations of the frequency of marker testing and whether values fell within the normal range. To predict LEMS scores at the chronic stage, eight different regression models (including linear, tree-based, and ensemble models) were used to quantify the predictive value of serological markers relative to a baseline model that relied on the very acute LEMS score and patient age alone. The inclusion of serological markers did not improve the performance of the prediction model. The best-performing approach including serological markers achieved a mean absolute error (MAE) of 6.59 (2.14), which was equivalent to the performance of the baseline model. As an alternative approach, we trained separate models based on the LEMS observed at the very acute stage after injury. Specifically, we considered individuals with an LEMS of 0 or an LEMS exceeding zero separately. This strategy led to a mean improvement in MAE across all cohorts and models, of 1.20 (2.13). We conclude that, in our study, routine serological markers hold limited power for prediction of LEMS. However, the implementation of model stratification by the very acute LEMS markedly enhanced prediction performance. This observation supports the inclusion of clinical knowledge in the modeling of prediction tasks for SCI recovery. Additionally, it lays the path for future research to consider stratified analyses when investigating the predictive power of potential biomarkers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶军辉发布了新的文献求助10
刚刚
何文鑫给何文鑫的求助进行了留言
刚刚
刚刚
1秒前
jy完成签到,获得积分20
1秒前
dlcbdy完成签到,获得积分10
2秒前
科研通AI6应助彘shen采纳,获得30
2秒前
缪连虎完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
hhh0921完成签到,获得积分20
2秒前
慕青应助yao chen采纳,获得10
3秒前
YuhangLiu完成签到,获得积分20
4秒前
非泥完成签到,获得积分10
4秒前
田同学发布了新的文献求助10
4秒前
4秒前
lene应助不回首采纳,获得10
4秒前
黄晓梅发布了新的文献求助10
4秒前
脑洞疼应助舒适芷天采纳,获得10
5秒前
顾建瑜发布了新的文献求助10
5秒前
曾经小伙发布了新的文献求助20
5秒前
一分不花赵德汉完成签到,获得积分10
6秒前
7秒前
7秒前
乐乐应助紫薰采纳,获得10
7秒前
善学以致用应助phraly采纳,获得30
8秒前
逐影发布了新的文献求助10
9秒前
9秒前
李爱国应助wnw采纳,获得30
9秒前
zzzq发布了新的文献求助10
10秒前
ChangShengtzu关注了科研通微信公众号
10秒前
12秒前
万能图书馆应助李不太白采纳,获得10
13秒前
14秒前
zzzq完成签到,获得积分20
15秒前
逐影完成签到,获得积分20
16秒前
16秒前
16秒前
杨静月发布了新的文献求助10
17秒前
沈文远完成签到,获得积分10
17秒前
太阳完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406668
求助须知:如何正确求助?哪些是违规求助? 4524470
关于积分的说明 14098590
捐赠科研通 4438297
什么是DOI,文献DOI怎么找? 2436104
邀请新用户注册赠送积分活动 1428223
关于科研通互助平台的介绍 1406294