Exploring the potential of routine serological markers in predicting neurological outcomes in spinal cord injury

医学 血清学 脊髓损伤 队列 阶段(地层学) 内科学 脊髓 免疫学 生物 精神科 古生物学 抗体
作者
Jacob Matthias,Louis P. Lukas,Sarah C. Brüningk,Doris Maier,Orpheus Mach,Lukas Grassner,John L.K. Kramer,Lucie Bourguignon,Catherine R. Jutzeler
出处
期刊:Experimental Neurology [Elsevier BV]
卷期号:380: 114918-114918
标识
DOI:10.1016/j.expneurol.2024.114918
摘要

Spinal cord injury (SCI) is a rare condition with a heterogeneous presentation, making the prediction of recovery challenging. However, serological markers have been shown to be associated with severity and long-term recovery following SCI. Therefore, our investigation aimed to assess the feasibility of translating this association into a prediction of the lower extremity motor scores (LEMS) at chronic stage (52 weeks after initial injury) in patients with SCI using routine serological markers. Serological markers, assessed within the initial seven days post-injury in the observational cohort study from the Trauma Hospital Murnau underwent diverse feature engineering approaches. These involved arithmetic measurements such as mean, median, minimum, maximum, and range, as well as considerations of the frequency of marker testing and whether values fell within the normal range. To predict LEMS scores at the chronic stage, eight different regression models (including linear, tree-based, and ensemble models) were used to quantify the predictive value of serological markers relative to a baseline model that relied on the very acute LEMS score and patient age alone. The inclusion of serological markers did not improve the performance of the prediction model. The best-performing approach including serological markers achieved a mean absolute error (MAE) of 6.59 (2.14), which was equivalent to the performance of the baseline model. As an alternative approach, we trained separate models based on the LEMS observed at the very acute stage after injury. Specifically, we considered individuals with an LEMS of 0 or an LEMS exceeding zero separately. This strategy led to a mean improvement in MAE across all cohorts and models, of 1.20 (2.13). We conclude that, in our study, routine serological markers hold limited power for prediction of LEMS. However, the implementation of model stratification by the very acute LEMS markedly enhanced prediction performance. This observation supports the inclusion of clinical knowledge in the modeling of prediction tasks for SCI recovery. Additionally, it lays the path for future research to consider stratified analyses when investigating the predictive power of potential biomarkers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迈克老狼发布了新的文献求助10
4秒前
123完成签到,获得积分10
5秒前
吕嫣娆完成签到 ,获得积分10
6秒前
争气完成签到 ,获得积分10
7秒前
平淡寄瑶完成签到,获得积分20
7秒前
柚C美式完成签到 ,获得积分10
9秒前
kysl完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
12秒前
鹏826完成签到 ,获得积分0
12秒前
JW流年完成签到 ,获得积分10
12秒前
冠心没有病完成签到,获得积分10
13秒前
wxnice完成签到,获得积分10
13秒前
搬砖完成签到 ,获得积分10
16秒前
PPSlu完成签到,获得积分10
16秒前
George完成签到,获得积分10
18秒前
漏脑之鱼完成签到 ,获得积分10
22秒前
风信子deon01完成签到,获得积分10
25秒前
今天进步了吗完成签到,获得积分10
26秒前
猫猫头完成签到 ,获得积分10
32秒前
chrysan完成签到,获得积分10
33秒前
nano完成签到 ,获得积分10
33秒前
jason完成签到 ,获得积分10
36秒前
为你等候完成签到,获得积分10
38秒前
三脸茫然完成签到 ,获得积分10
41秒前
alan完成签到 ,获得积分10
42秒前
luoqin完成签到 ,获得积分10
43秒前
看文献完成签到,获得积分0
46秒前
多喝水完成签到 ,获得积分10
48秒前
爱静静应助科研通管家采纳,获得30
52秒前
慕青应助科研通管家采纳,获得20
52秒前
充电宝应助科研通管家采纳,获得10
52秒前
oo完成签到 ,获得积分10
52秒前
量子星尘发布了新的文献求助30
53秒前
落后的怀梦完成签到 ,获得积分10
54秒前
56秒前
欢呼的丁真完成签到,获得积分10
58秒前
hhh完成签到,获得积分10
1分钟前
李霞完成签到 ,获得积分10
1分钟前
可爱丸子完成签到,获得积分10
1分钟前
东风压倒西风完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015640
求助须知:如何正确求助?哪些是违规求助? 3555625
关于积分的说明 11318138
捐赠科研通 3288796
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015