氢化物
锌
二氧化碳
多孔性
终端(电信)
化学
材料科学
化学工程
冶金
复合材料
有机化学
金属
计算机科学
工程类
电信
作者
Rachel C. Rohde,Kurtis M. Carsch,Matthew N. Dods,Henry Z. H. Jiang,Alexandra R. McIsaac,Ryan A. Klein,Hyunchul Kwon,Sarah L. Karstens,Yang Wang,Adrian J. Huang,Jordan W. Taylor,Yuto Yabuuchi,Nikolay V. Tkachenko,Katie R. Meihaus,Hiroyasu Furukawa,Danielle R. Yahne,Kaitlyn E. Engler,Karen C. Bustillo,Andrew M. Minor,Jeffrey A. Reimer,Martin Head‐Gordon,Craig M. Brown,Jeffrey R. Long
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2024-11-14
卷期号:386 (6723): 814-819
标识
DOI:10.1126/science.adk5697
摘要
Carbon capture can mitigate point-source carbon dioxide (CO 2 ) emissions, but hurdles remain that impede the widespread adoption of amine-based technologies. Capturing CO 2 at temperatures closer to those of many industrial exhaust streams (>200°C) is of interest, although metal oxide absorbents that operate at these temperatures typically exhibit sluggish CO 2 absorption kinetics and instability to cycling. Here, we report a porous metal–organic framework featuring terminal zinc hydride sites that reversibly bind CO 2 at temperatures above 200°C—conditions that are unprecedented for intrinsically porous materials. Gas adsorption, structural, spectroscopic, and computational analyses elucidate the rapid, reversible nature of this transformation. Extended cycling and breakthrough analyses reveal that the material is capable of deep carbon capture at low CO 2 concentrations and high temperatures relevant to postcombustion capture.
科研通智能强力驱动
Strongly Powered by AbleSci AI