氢化物
锌
二氧化碳
吸附
多孔性
多孔介质
碳捕获和储存(时间表)
吸收(声学)
碳纤维
无机化学
化学
材料科学
环境化学
化学工程
冶金
复合材料
有机化学
金属
工程类
气候变化
复合数
生物
生态学
作者
Rachel C. Rohde,Kurtis M. Carsch,Matthew N. Dods,Henry Z. H. Jiang,Alexandra R. McIsaac,Ryan A. Klein,Hyunchul Kwon,Sarah L. Karstens,Yang Wang,Adrian J. Huang,Jordan W. Taylor,Yuto Yabuuchi,Nikolay V. Tkachenko,Katie R. Meihaus,Hiroyasu Furukawa,Danielle R. Yahne,Kaitlyn E. Engler,Karen C. Bustillo,Andrew M. Minor,Jeffrey A. Reimer
出处
期刊:Science
[American Association for the Advancement of Science]
日期:2024-11-14
卷期号:386 (6723): 814-819
被引量:4
标识
DOI:10.1126/science.adk5697
摘要
Carbon capture can mitigate point-source carbon dioxide (CO 2 ) emissions, but hurdles remain that impede the widespread adoption of amine-based technologies. Capturing CO 2 at temperatures closer to those of many industrial exhaust streams (>200°C) is of interest, although metal oxide absorbents that operate at these temperatures typically exhibit sluggish CO 2 absorption kinetics and instability to cycling. Here, we report a porous metal–organic framework featuring terminal zinc hydride sites that reversibly bind CO 2 at temperatures above 200°C—conditions that are unprecedented for intrinsically porous materials. Gas adsorption, structural, spectroscopic, and computational analyses elucidate the rapid, reversible nature of this transformation. Extended cycling and breakthrough analyses reveal that the material is capable of deep carbon capture at low CO 2 concentrations and high temperatures relevant to postcombustion capture.
科研通智能强力驱动
Strongly Powered by AbleSci AI