亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Utilizing Large Language Models to Detect and Understand Drug Discontinuation Events in Online Forums: Development and Validation Study (Preprint)

预印本 中止 心理学 数据科学 计算机科学 医学 万维网 精神科
作者
William Trevena,Xiang Zhong,Michelle Alvarado,Alexander Semenov,Alp Oktay,Devin Devlin,Aarya Yogesh Gohil,Sai Harsha Chittimouju
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
标识
DOI:10.2196/54601
摘要

The implementation of large language models (LLMs), such as BART (Bidirectional and Auto-Regressive Transformers) and GPT-4, has revolutionized the extraction of insights from unstructured text. These advancements have expanded into health care, allowing analysis of social media for public health insights. However, the detection of drug discontinuation events (DDEs) remains underexplored. Identifying DDEs is crucial for understanding medication adherence and patient outcomes. The aim of this study is to provide a flexible framework for investigating various clinical research questions in data-sparse environments. We provide an example of the utility of this framework by identifying DDEs and their root causes in an open-source web-based forum, MedHelp, and by releasing the first open-source DDE datasets to aid further research in this domain. We used several LLMs, including GPT-4 Turbo, GPT-4o, DeBERTa (Decoding-Enhanced Bidirectional Encoder Representations from Transformer with Disentangled Attention), and BART, among others, to detect and determine the root causes of DDEs in user comments posted on MedHelp. Our study design included the use of zero-shot classification, which allows these models to make predictions without task-specific training. We split user comments into sentences and applied different classification strategies to assess the performance of these models in identifying DDEs and their root causes. Among the selected models, GPT-4o performed the best at determining the root causes of DDEs, predicting only 12.9% of root causes incorrectly (hamming loss). Among the open-source models tested, BART demonstrated the best performance in detecting DDEs, achieving an F1-score of 0.86, a false positive rate of 2.8%, and a false negative rate of 6.5%, all without any fine-tuning. The dataset included 10.7% (107/1000) DDEs, emphasizing the models' robustness in an imbalanced data context. This study demonstrated the effectiveness of open- and closed-source LLMs, such as GPT-4o and BART, for detecting DDEs and their root causes from publicly accessible data through zero-shot classification. The robust and scalable framework we propose can aid researchers in addressing data-sparse clinical research questions. The launch of open-access DDE datasets has the potential to stimulate further research and novel discoveries in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
小园饼干应助wunai012321采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
玛卡巴卡完成签到 ,获得积分10
23秒前
24秒前
顾矜应助lili采纳,获得10
28秒前
量子星尘发布了新的文献求助10
28秒前
38秒前
量子星尘发布了新的文献求助10
38秒前
Ava应助科研通管家采纳,获得10
39秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
lili发布了新的文献求助10
43秒前
ovo发布了新的文献求助10
51秒前
量子星尘发布了新的文献求助10
56秒前
1分钟前
lpc完成签到 ,获得积分10
1分钟前
1分钟前
酷波er应助66采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
学术包子发布了新的文献求助10
1分钟前
Eatanicecube完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
学术包子完成签到,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
ovo发布了新的文献求助10
1分钟前
1分钟前
66发布了新的文献求助10
1分钟前
头秃科研人完成签到,获得积分10
1分钟前
大大小完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
蛙蛙完成签到,获得积分10
2分钟前
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660939
求助须知:如何正确求助?哪些是违规求助? 3222150
关于积分的说明 9743733
捐赠科研通 2931683
什么是DOI,文献DOI怎么找? 1605151
邀请新用户注册赠送积分活动 757705
科研通“疑难数据库(出版商)”最低求助积分说明 734462