Overcoming sparse datasets with Multi-Task Learning as applied to High Entropy Alloys

高熵合金 计算机科学 任务(项目管理) 多任务学习 熵(时间箭头) 机器学习 人工智能 材料科学 物理 合金 工程类 系统工程 量子力学 复合材料
作者
Arindam Debnath,Wesley F. Reinhart
出处
期刊:Machine learning: science and technology [IOP Publishing]
标识
DOI:10.1088/2632-2153/adb53c
摘要

Abstract The design of novel High Entropy Alloys for use in high-temperature applications is an area of active interest due to their potential to provide exceptional properties compared to conventional alloys. Since the increased popularity of machine learning, an important cog in the design process has been training surrogate models on alloy properties. However, these Single-Task models are trained on individual mechanical properties and do not take advantage of the relatedness between properties. Multi-Task models can capture the interdependencies between tasks, leading to potentially more accurate predictions for all tasks. In this paper, we investigate if Multi-Task models can show improvement over Single-Task models when used for predicting the mechanical properties of these alloys. To ensure fair evaluation between the models, we apply L0 regularization and skip connections to the models, which allows them to adjust the number of model parameters and depth for optimal performance. We find that the Multi-Task models can leverage task relationships to perform better than Single-Task models, especially for high amounts of missing data in the tasks. Furthermore, adding simple auxiliary tasks can boost Multi-Task performance even further despite not being effective as input descriptors to linear models themselves. We anticipate that the proposed strategies can achieve more accurate predictions and consequently enable better design capabilities for such data-constrained domains without incurring much additional computational cost.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助龚成明采纳,获得10
刚刚
Orange应助JAMES采纳,获得10
刚刚
zzs123发布了新的文献求助10
刚刚
Kris发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
我是老大应助朱啊朱采纳,获得30
3秒前
paul发布了新的文献求助10
3秒前
闪闪完成签到,获得积分10
3秒前
Become发布了新的文献求助10
3秒前
3秒前
NexusExplorer应助美君采纳,获得10
4秒前
4秒前
杨杨发布了新的文献求助10
5秒前
沁钦发布了新的文献求助10
5秒前
ZZzz完成签到,获得积分10
5秒前
小二郎应助哭唧唧采纳,获得10
5秒前
serrtwset关注了科研通微信公众号
5秒前
nnnn发布了新的文献求助10
6秒前
橱窗完成签到,获得积分10
6秒前
深年完成签到,获得积分10
7秒前
徐一羊发布了新的文献求助10
8秒前
Leif举报烟柳画桥求助涉嫌违规
8秒前
9秒前
霸气凡白发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
董绮敏完成签到 ,获得积分10
11秒前
慕青应助DBY采纳,获得10
12秒前
13秒前
14秒前
朱啊朱给朱啊朱的求助进行了留言
14秒前
橘vv发布了新的文献求助10
14秒前
14秒前
15秒前
美君发布了新的文献求助10
15秒前
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515890
求助须知:如何正确求助?哪些是违规求助? 3098083
关于积分的说明 9237912
捐赠科研通 2793061
什么是DOI,文献DOI怎么找? 1532791
邀请新用户注册赠送积分活动 712304
科研通“疑难数据库(出版商)”最低求助积分说明 707256