Online Streaming Feature Selection Using Bidirectional Complementarity based on Fuzzy Gini Entropy

特征选择 计算机科学 熵(时间箭头) 数据挖掘 模糊逻辑 人工智能 联合熵 机器学习 最大熵原理 物理 量子力学
作者
Chucai Zhang,Zhengxiang Lu,Yongkang Zhang,Jianhua Dai
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tfuzz.2025.3529466
摘要

Online streaming feature selection has garnered widespread attention due to its efficiency and adaptability in dynamic data environments. However, existing methods primarily focus on the correlation and redundancy among features, often overlooking the complementarity between candidate and selected features. In this paper, we address this gap by introducing three key innovations. First, we construct a novel metric, fuzzy Gini entropy (FGE), to measure feature uncertainty within datasets. Unlike traditional information entropy, fuzzy Gini entropy inherits the advantages of the Gini index, effectively measuring the impurity of datasets, while also being capable of handling common fuzzy environments. Accordingly, related metrics such as fuzzy joint Gini entropy, fuzzy conditional Gini entropy, and fuzzy mutual Gini information are developed. Second, we innovatively propose the concept of the bidirectional complementarity ratio (BCR), which captures the relationship between candidate features and previously selected features in online streaming feature selection. This mitigates the unfairness associated with the late arrival of features, ensuring that candidate features with a bidirectional complementary effect that outweighs their redundancy effect with the selected features are chosen. Third, we design an online streaming feature selection method named FGE-OSFS. The method evaluates streaming features through three steps: online relevance analysis, online bidirectional complementarity analysis, and online redundancy analysis. Finally, we compare the proposed method with five state-of-the-art online streaming feature selection methods, demonstrating the effectiveness of our new approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妮妮发布了新的文献求助10
刚刚
11发布了新的文献求助10
刚刚
我是老大应助丸子采纳,获得10
1秒前
阳光完成签到,获得积分10
1秒前
犹豫的若完成签到,获得积分10
1秒前
2秒前
kangshuai完成签到,获得积分10
2秒前
Gentleman完成签到,获得积分10
2秒前
傲娇书萱完成签到,获得积分20
2秒前
juckblack发布了新的文献求助10
2秒前
酷波er应助踏实的熠彤采纳,获得10
2秒前
叽歪提完成签到,获得积分20
3秒前
4秒前
asdfqwer发布了新的文献求助10
4秒前
伏地魔风雪山神庙完成签到,获得积分10
5秒前
wlf完成签到,获得积分10
5秒前
东如海完成签到,获得积分10
5秒前
peace完成签到 ,获得积分10
5秒前
希望天下0贩的0应助liu采纳,获得10
5秒前
wen完成签到,获得积分10
5秒前
星辰大海应助魔力兔子采纳,获得10
6秒前
刘振岁发布了新的文献求助10
7秒前
adgcxvjj应助nml采纳,获得10
7秒前
ShellyMaya完成签到 ,获得积分10
7秒前
Lillie完成签到,获得积分10
7秒前
7秒前
好想被风刮走完成签到,获得积分10
8秒前
Chen完成签到,获得积分10
8秒前
笑点低怀亦完成签到,获得积分10
8秒前
果实发布了新的文献求助10
9秒前
9秒前
Lucas应助猷鲛采纳,获得10
9秒前
DDD完成签到,获得积分10
9秒前
深情安青应助Andyyang117采纳,获得10
9秒前
与月同行完成签到,获得积分10
9秒前
cocu117完成签到,获得积分10
10秒前
123完成签到 ,获得积分10
10秒前
快哉快哉完成签到,获得积分20
10秒前
11秒前
小郝已读博完成签到 ,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3539415
求助须知:如何正确求助?哪些是违规求助? 3116972
关于积分的说明 9328381
捐赠科研通 2814759
什么是DOI,文献DOI怎么找? 1547210
邀请新用户注册赠送积分活动 720830
科研通“疑难数据库(出版商)”最低求助积分说明 712282