亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intratumoral and peritumoral radiomics for forecasting microsatellite status in gastric cancer: a multicenter study

接收机工作特性 外科肿瘤学 微卫星不稳定性 无线电技术 逻辑回归 医学 支持向量机 人工智能 癌症 交叉验证 放射科 机器学习 计算机科学 肿瘤科 内科学 微卫星 生物 等位基因 生物化学 基因
作者
Yunzhou Xiao,Jianping Zhu,Huanhuan Xie,Zhongchu Wang,Zhong Huang,Miaoguang Su
出处
期刊:BMC Cancer [Springer Nature]
卷期号:25 (1)
标识
DOI:10.1186/s12885-025-13450-3
摘要

This investigation attempted to examine the effectiveness of CT-derived peritumoral and intratumoral radiomics in forecasting microsatellite instability (MSI) status preoperatively among gastric cancer (GC) patients. A retrospective analysis was performed on GC patients from February 2019 to December 2023 across three healthcare institutions. 364 patients (including 41 microsatellite instability-high (MSI-H) and 323 microsatellite instability-low/stable (MSI-L/S)) were stratified into a training set (n = 202), an internal validation set (n = 84), and an external validation set (n = 78). Radiomics features were obtained from both the intratumoral region (IR) and the intratumoral plus 3-mm peritumoral region (IPR) on preoperative contrast-enhanced CT images. After standardizing and reducing the dimensionality of these features, six radiomic models were constructed utilizing three machine learning techniques: Support Vector Machine (SVM), Linear Support Vector Classification (LinearSVC), and Logistic Regression (LR). The optimal model was determined by evaluating the Receiver Operating Characteristic (ROC) curve's Area Under the Curve (AUC), and the radiomics score (Radscore) was computed. A clinical model was developed using clinical characteristics and CT semantic features, with the Radscore integrated to create a combined model. Used ROC curves, calibration plots, and Decision Curve Analysis (DCA) to assess the performance of radiomics, clinical, and combined models. The LinearSVC model using the IPR achieved the highest AUC of 0.802 in the external validation set. The combined model yielded superior AUCs in internal and external validation sets (0.891 and 0.856) in comparison to clinical model [(0.724, P = 0.193) and (0.655, P = 0.072)] and radiomics model [(0.826, P = 0.160) and (0.802, P = 0.068)]. Furthermore, results from calibration and DCA underscored the model's suitability and clinical relevance. The combined model, which integrates IPR radiomics with clinical characteristics, accurately predicts MSI status and supports the development of personalized treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慢慢的地理人完成签到,获得积分10
2秒前
joanna完成签到,获得积分10
8秒前
11秒前
帅气的如豹完成签到,获得积分10
19秒前
TiAmo完成签到 ,获得积分10
25秒前
28秒前
桐桐应助科研通管家采纳,获得10
29秒前
tuanheqi应助科研通管家采纳,获得200
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
胡庆余完成签到 ,获得积分10
30秒前
研友_ana发布了新的文献求助10
32秒前
穆青完成签到 ,获得积分10
36秒前
36秒前
忧心的帽子完成签到,获得积分20
41秒前
挖菜发布了新的文献求助10
42秒前
45秒前
YH发布了新的文献求助10
48秒前
48秒前
奋斗溪流发布了新的文献求助10
52秒前
Kevin完成签到,获得积分10
1分钟前
YH完成签到,获得积分10
1分钟前
1分钟前
充电宝应助奋斗溪流采纳,获得10
1分钟前
oyxz完成签到,获得积分10
1分钟前
树枝完成签到,获得积分10
1分钟前
chl发布了新的文献求助10
1分钟前
阿泽完成签到 ,获得积分10
1分钟前
Lucas应助草木青采纳,获得10
1分钟前
可爱的函函应助清秀面包采纳,获得10
1分钟前
1分钟前
1分钟前
清秀面包发布了新的文献求助10
1分钟前
1分钟前
函数完成签到 ,获得积分10
2分钟前
矮小的寒天完成签到 ,获得积分10
2分钟前
Zhouzhou完成签到 ,获得积分10
2分钟前
风趣冰棍完成签到,获得积分20
2分钟前
烂漫的汲完成签到,获得积分10
2分钟前
赵立韶华完成签到 ,获得积分10
2分钟前
杳鸢应助超级冬瓜采纳,获得20
2分钟前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422828
求助须知:如何正确求助?哪些是违规求助? 3023206
关于积分的说明 8903788
捐赠科研通 2710571
什么是DOI,文献DOI怎么找? 1486572
科研通“疑难数据库(出版商)”最低求助积分说明 687093
邀请新用户注册赠送积分活动 682330