A Bayesian approach to the analysis of dose–response data: estimating natural survivorship without Abbott’s correction and inclusion of overdispersion estimates

过度分散 统计 Probit模型 贝叶斯概率 准似然 数学 随机效应模型 生物 计数数据 人口 计量经济学 泊松回归 泊松分布 人口学 医学 荟萃分析 社会学 内科学
作者
Michael A. Caprio,José Bruno Malaquias,Dominic Reisig
出处
期刊:Journal of Economic Entomology [Oxford University Press]
标识
DOI:10.1093/jee/toae287
摘要

We assessed the utility of a Bayesian analysis of dose-mortality curves using probit analysis. A Bayesian equivalent of a conventional single population probit analysis using Abbott's correction demonstrated the ability of the Bayesian model to recover parameters from generative data. We then developed a model that removed Abbott's correction and estimated natural survivorship as part of the overall model fitting process. Based on WAIC (information content) scores, this model was selected over the model using Abbott's corrected data in 196 out of 200 randomly generated datasets. This suggests that considerable information on control survivorship exists in response to treated doses in a bioassay, information that is partially removed when using Abbott's correction. Overdispersion in count data is common in ecological data, and a final model was developed that estimated overdispersion (kappa) as part of the model fitting process. When this model was compared to a model without overdispersion, it was selected as the best model in all 200 randomly generated datasets when kappa was low (5-20, high levels of overdispersion), while the 2 models performed equally well when kappa was large (500-2,000, low levels of overdispersion). The model with overdispersion was used to estimate parameters from bioassays of 10 populations of Helicoverpa zea (Lepidoptera: Noctuidae) exposed to Vip3a toxin, identifying 26 out of 45 pairwise comparisons that showed strong evidence of differences in LC50 estimates, adjusted for multiple comparisons.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助团子采纳,获得10
刚刚
1秒前
cannon8应助科研通管家采纳,获得20
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
1秒前
华仔应助科研通管家采纳,获得30
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
jiujiuhuang完成签到,获得积分10
2秒前
ZLL发布了新的文献求助10
3秒前
ZLL完成签到,获得积分10
8秒前
zzz完成签到,获得积分10
12秒前
顺心的梨愁完成签到 ,获得积分10
13秒前
16秒前
HEIKU应助啊啊啊采纳,获得10
17秒前
英姑应助啊啊啊采纳,获得10
17秒前
小左发布了新的文献求助10
21秒前
25秒前
堂堂发布了新的文献求助20
29秒前
lee发布了新的文献求助10
29秒前
Jane发布了新的文献求助30
30秒前
34秒前
杨杨完成签到,获得积分10
35秒前
zj完成签到,获得积分10
37秒前
zw完成签到,获得积分0
37秒前
raulben完成签到,获得积分10
37秒前
房LY完成签到,获得积分10
39秒前
40秒前
文静青梦发布了新的文献求助10
41秒前
JamesPei应助八点必起采纳,获得10
43秒前
贺岚发布了新的文献求助10
46秒前
Polaris发布了新的文献求助10
47秒前
shunshun51213完成签到,获得积分10
48秒前
温偏烫发布了新的文献求助50
49秒前
Jasper应助Jane采纳,获得10
49秒前
kaka34发布了新的文献求助10
50秒前
NexusExplorer应助阳光山槐采纳,获得10
50秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267632
求助须知:如何正确求助?哪些是违规求助? 2907088
关于积分的说明 8340578
捐赠科研通 2577809
什么是DOI,文献DOI怎么找? 1401227
科研通“疑难数据库(出版商)”最低求助积分说明 655005
邀请新用户注册赠送积分活动 633974