A Bayesian approach to the analysis of dose–response data: estimating natural survivorship without Abbott’s correction and inclusion of overdispersion estimates

过度分散 统计 Probit模型 贝叶斯概率 准似然 数学 随机效应模型 生物 计数数据 人口 计量经济学 泊松回归 泊松分布 人口学 医学 荟萃分析 内科学 社会学
作者
Michael A. Caprio,José Bruno Malaquias,Dominic Reisig
出处
期刊:Journal of Economic Entomology [Oxford University Press]
标识
DOI:10.1093/jee/toae287
摘要

We assessed the utility of a Bayesian analysis of dose-mortality curves using probit analysis. A Bayesian equivalent of a conventional single population probit analysis using Abbott's correction demonstrated the ability of the Bayesian model to recover parameters from generative data. We then developed a model that removed Abbott's correction and estimated natural survivorship as part of the overall model fitting process. Based on WAIC (information content) scores, this model was selected over the model using Abbott's corrected data in 196 out of 200 randomly generated datasets. This suggests that considerable information on control survivorship exists in response to treated doses in a bioassay, information that is partially removed when using Abbott's correction. Overdispersion in count data is common in ecological data, and a final model was developed that estimated overdispersion (kappa) as part of the model fitting process. When this model was compared to a model without overdispersion, it was selected as the best model in all 200 randomly generated datasets when kappa was low (5-20, high levels of overdispersion), while the 2 models performed equally well when kappa was large (500-2,000, low levels of overdispersion). The model with overdispersion was used to estimate parameters from bioassays of 10 populations of Helicoverpa zea (Lepidoptera: Noctuidae) exposed to Vip3a toxin, identifying 26 out of 45 pairwise comparisons that showed strong evidence of differences in LC50 estimates, adjusted for multiple comparisons.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
浮游应助科研通管家采纳,获得30
刚刚
万弘文完成签到,获得积分10
刚刚
李健应助科研通管家采纳,获得20
1秒前
烟花应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
Zeus应助科研通管家采纳,获得10
1秒前
Ava应助callmefather采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
1秒前
慕青应助芝麻糊采纳,获得10
2秒前
yiliu0111487完成签到,获得积分10
2秒前
2秒前
行舟发布了新的文献求助10
3秒前
赘婿应助帅气的可乐采纳,获得10
3秒前
无心发布了新的文献求助10
4秒前
4秒前
4秒前
Hello应助笨笨从凝采纳,获得10
4秒前
思源应助LXZ采纳,获得10
4秒前
张桂钊发布了新的文献求助10
5秒前
5秒前
6秒前
cldg完成签到,获得积分10
6秒前
所所应助简单老三采纳,获得10
6秒前
changping应助dt采纳,获得10
6秒前
6秒前
6秒前
ding应助代沁采纳,获得10
8秒前
望舒发布了新的文献求助30
8秒前
浮游应助金世航采纳,获得10
8秒前
8秒前
Azyyyy完成签到,获得积分10
9秒前
吉他配三弦完成签到,获得积分10
9秒前
9秒前
小二郎应助含糊的之味采纳,获得10
9秒前
情怀应助zy采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193830
求助须知:如何正确求助?哪些是违规求助? 4376175
关于积分的说明 13628611
捐赠科研通 4231092
什么是DOI,文献DOI怎么找? 2320710
邀请新用户注册赠送积分活动 1319080
关于科研通互助平台的介绍 1269416