Enhanced YOLOv10 Framework Featuring DPAM and DALSM for Real-Time Underwater Object Detection

目标检测 水下 计算机科学 对象(语法) 计算机视觉 遥感 人工智能 模式识别(心理学) 地质学 海洋学
作者
Suthir Sriram,P Aburvan,T P Arun Kaarthic,V Nivethitha,M. Thangavel
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/access.2025.3527315
摘要

Recently, spotting underwater objects has been increasingly difficult due to the complexities of marine environments and varied visibility conditions. YOLOv10 is notable for its effective, robust architecture, featuring significant components: advanced backbone networks and enhanced feature pyramid networks that also deliver anchor-free detection. In delivering YOLOv10, we enhance it with dual partial attention mechanism (DPAM) and dual adaptive label assignment with sun glint removal module (DALSM) along with marine fusion loss (MFL). With DPAM, the latest refinement processes for conservation focus on feature extraction to account for key highlights and in the scene, include temporal context, both critical for interpretation of the dynamic realm below the ocean. The prefix with DALSM involves adaptive dual label assignment and techniques for sun glint removal. The marine fusion loss (MFL) provides an object detection prediction that combines both binary cross-entropy loss and complete intersection over union (CIoU) loss to enhance bounding box localization while also including spatial context to incorporate important underwater features. With the experiments, we attenuate enhancements with device gradient clipping, model checkpointing, and advanced augmentation processes to gain 3.04% improvement in mean Average Precision (mAP). These enhancements mitigate perceived challenges of underwater detection while enhancing knowledge of understanding marine life.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
廉凌波发布了新的文献求助10
1秒前
勤奋梨愁发布了新的文献求助10
2秒前
2秒前
潘善若发布了新的文献求助10
4秒前
caicai完成签到,获得积分10
5秒前
CodeCraft应助廉凌波采纳,获得10
6秒前
8秒前
仁爱水之完成签到 ,获得积分10
8秒前
丫丫完成签到,获得积分10
10秒前
10秒前
10秒前
prime发布了新的文献求助10
11秒前
雨过天晴发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
天天快乐应助玛卡巴卡采纳,获得30
14秒前
xiaohu完成签到,获得积分10
14秒前
zm发布了新的文献求助10
16秒前
温暖的冰菱关注了科研通微信公众号
16秒前
程程发布了新的文献求助10
16秒前
乖猫要努力应助感动黄豆采纳,获得10
17秒前
潘善若发布了新的文献求助10
19秒前
anna发布了新的文献求助10
20秒前
21秒前
充电宝应助momo采纳,获得10
21秒前
勤奋梨愁完成签到,获得积分10
22秒前
summer完成签到,获得积分10
22秒前
23秒前
深情安青应助程程采纳,获得10
25秒前
张雯思发布了新的文献求助10
25秒前
格格完成签到 ,获得积分10
28秒前
28秒前
Hello应助下一秒采纳,获得10
31秒前
天天快乐应助科研通管家采纳,获得10
32秒前
赘婿应助科研通管家采纳,获得10
32秒前
搜集达人应助科研通管家采纳,获得10
32秒前
桐桐应助科研通管家采纳,获得10
32秒前
科研通AI5应助科研通管家采纳,获得10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136