Enhanced YOLOv10 Framework Featuring DPAM and DALSM for Real-Time Underwater Object Detection

目标检测 水下 计算机科学 对象(语法) 计算机视觉 遥感 人工智能 模式识别(心理学) 地质学 海洋学
作者
Suthir Sriram,P Aburvan,T P Arun Kaarthic,V Nivethitha,M. Thangavel
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/access.2025.3527315
摘要

Recently, spotting underwater objects has been increasingly difficult due to the complexities of marine environments and varied visibility conditions. YOLOv10 is notable for its effective, robust architecture, featuring significant components: advanced backbone networks and enhanced feature pyramid networks that also deliver anchor-free detection. In delivering YOLOv10, we enhance it with dual partial attention mechanism (DPAM) and dual adaptive label assignment with sun glint removal module (DALSM) along with marine fusion loss (MFL). With DPAM, the latest refinement processes for conservation focus on feature extraction to account for key highlights and in the scene, include temporal context, both critical for interpretation of the dynamic realm below the ocean. The prefix with DALSM involves adaptive dual label assignment and techniques for sun glint removal. The marine fusion loss (MFL) provides an object detection prediction that combines both binary cross-entropy loss and complete intersection over union (CIoU) loss to enhance bounding box localization while also including spatial context to incorporate important underwater features. With the experiments, we attenuate enhancements with device gradient clipping, model checkpointing, and advanced augmentation processes to gain 3.04% improvement in mean Average Precision (mAP). These enhancements mitigate perceived challenges of underwater detection while enhancing knowledge of understanding marine life.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jackie完成签到,获得积分10
2秒前
Jeffrey完成签到,获得积分10
5秒前
Ava应助科研通管家采纳,获得50
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
guoguo应助科研通管家采纳,获得10
7秒前
乐乐应助科研通管家采纳,获得10
7秒前
7秒前
华仔应助科研通管家采纳,获得10
8秒前
guoguo应助科研通管家采纳,获得10
8秒前
Ganlou应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
guoguo应助科研通管家采纳,获得10
8秒前
易清华完成签到 ,获得积分10
9秒前
葛怀锐完成签到 ,获得积分10
11秒前
搞怪的白云完成签到 ,获得积分10
11秒前
MG_XSJ完成签到,获得积分10
13秒前
sjx1116完成签到,获得积分10
14秒前
tuanheqi应助乐生采纳,获得200
14秒前
酷酷菲音完成签到,获得积分10
15秒前
苏苏完成签到 ,获得积分10
18秒前
19秒前
mmooo完成签到 ,获得积分10
19秒前
笑嘻嘻完成签到,获得积分10
19秒前
一味愚完成签到,获得积分10
20秒前
喜汁郎完成签到,获得积分10
24秒前
情怀应助yangyang采纳,获得10
24秒前
26秒前
首席医官完成签到,获得积分10
29秒前
29秒前
001完成签到 ,获得积分10
32秒前
yyyyyyyyyy完成签到 ,获得积分10
32秒前
Jiangsun完成签到,获得积分10
33秒前
拾一完成签到,获得积分10
36秒前
典雅的语海完成签到,获得积分10
36秒前
123123完成签到,获得积分10
37秒前
追寻白桃完成签到,获得积分10
38秒前
仁爱水之完成签到 ,获得积分10
40秒前
团团团完成签到 ,获得积分10
40秒前
Lisztan完成签到,获得积分10
40秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339162
求助须知:如何正确求助?哪些是违规求助? 2967059
关于积分的说明 8628112
捐赠科研通 2646548
什么是DOI,文献DOI怎么找? 1449297
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660180