毛细管作用
计算机科学
任务(项目管理)
生物系统
生物医学工程
材料科学
生物
工程类
复合材料
系统工程
作者
Michael J. Donzanti,Bryan J. Ferrick,Omkar Mhatre,Brea Chernokal,Diana C. Renteria,Jason P. Gleghorn
出处
期刊:ACS Biomaterials Science & Engineering
[American Chemical Society]
日期:2024-11-28
标识
DOI:10.1021/acsbiomaterials.4c01247
摘要
Generation of in vitro tissue models with serially perfused hierarchical vasculature would allow greater control of fluid perfusion throughout the network and enable direct mechanistic investigation of vasculogenesis, angiogenesis, and vascular remodeling. In this work, we have developed a method to produce a closed, serially perfused, multiscale vessel network fully embedded within an acellular hydrogel, where flow through the capillary bed is required prior to fluid exit. We confirmed that the acellular and cellular gel-gel interface was functionally annealed without preventing or biasing cell migration and endothelial self-assembly. Multiscale connectivity of the vessel network was validated via high-resolution microscopy techniques to confirm anastomosis between self-assembled and patterned vessels. Lastly, using a simple acrylic cassette and fluorescently labeled microspheres, the multiscale network was demonstrated to be perfusable. Directed flow from inlet to outlet mandated flow through the capillary bed. This method for producing closed, multiscale vascular networks was developed with the intention of straightforward fabrication and engineering techniques so as to be a low barrier to entry for researchers who wish to investigate mechanistic questions in vascular biology. This ease of use offers a facile extension of these methods for incorporation into organoid culture, organ-on-a-chip (OOC) models, and bioprinted tissues.
科研通智能强力驱动
Strongly Powered by AbleSci AI