生物
溶酶体
生物发生
细胞生物学
自噬
功能(生物学)
细胞器生物发生
遗传学
生物化学
基因
酶
细胞凋亡
标识
DOI:10.1080/15548627.2025.2456064
摘要
Induction of macroautophagy/autophagy has been established as an important function elicited by the CGAS-STING1 pathway during pathogen infection. However, it remains unknown whether lysosomal activity within the cell in these settings is concurrently enhanced to cope with the increased autophagic flux. Recently, we discovered that the CGAS-STING1 pathway elevates the degradative capacity of the cell by activating lysosome biogenesis. Intriguingly, we found that STING1-induced GABARAP lipidation, rather than TBK1 activation, serves as the key mediator triggering the nuclear translocation of transcription factor TFEB and enhances the expression of lysosome-related genes. Mechanistically, we demonstrated that lipidated GABARAP on single membranes, regulated by the V-ATPase-ATG16L1 axis, sequesters the FLCN-FNIP complex to abolish its function toward RRAGC-RRAGD, leading to a specific impairment of MTORC1-dependent phosphorylation of TFEB and resulting in its subsequent nuclear translocation. Functionally, we showed that STING1-induced lysosome biogenesis is essential for the clearance of cytoplasmic DNA and the elimination of invading pathogens. Collectively, our findings underscore the induction of lysosome biogenesis as a novel function of the CGAS-STING1 pathway.China; Yinfeng Xu; Email: yinfengxu@hnfnu.edu.cn; Hunan First Normal University, 1015 Feng-Lin-San Road, Changsha, Hunan 410,205, China.
科研通智能强力驱动
Strongly Powered by AbleSci AI