A multi-sequence MRI-based hierarchical expert diagnostic method for the molecular subtype of breast cancer

乳腺癌 序列(生物学) 计算机科学 人工智能 癌症 医学 计算生物学 内科学 生物 遗传学
作者
Hongyu Wang,Yanfang Hao,Pingping Wang,Erjuan Wang,Songtao Ding,Baoying Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/jbhi.2024.3486182
摘要

Breast cancer is one of the cancers of deep concern worldwide, and the molecular subtype of breast cancer is significant for patients' treatment selection, and prognosis judgment. The application of multi-sequence MRI technology provides a new non-invasive companion diagnostic method for molecular subtypes of breast cancer, which can more accurately assess the vascular status of tumors and reveal fine structures. However, providing interpretable classification results remains a challenge. Recently, although many convolutional neural network (CNN) methods and fine-grained classification methods based on MRI inputs have been proposed. However, most of these methods operate in a 'black-box' without a detailed explanation of the intermediate processes, resulting in a lack of interpretability of the breast cancer classification process. To address this problem, our study proposes a multi-sequence MRI-based hierarchical expert diagnostic method for the molecular subtype of breast cancer. With the strong differentiation module, this method first identifies enhanced features in breast tumors, ensuring that the subsequent classification process is precisely focused on the lesion features. In addition, inspired by the codiagnosis of multiple experts in clinical diagnosis, we set up a mechanism of collaborative diagnostic corrective learning by hierarchical experts to provide an interpretable classification process. Compared with previous studies, the framework learns features with a strong distinguishing ability for breast tumor classification. Specifically, multiple experts corrected each other's learning to give more accurate and interpretable classification results, significantly improving clinical diagnosis's practical value. We conducted extensive experiments on a breast dataset and compared it quantitatively with other methods, and we achieved the best performance in terms of accuracy (0.889) and F1 Score (0.893).We make the code public on GitHub: https://github.com/yanfangHao/HED.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ambition发布了新的文献求助10
刚刚
刚刚
斯文的若颜应助xiongyue采纳,获得10
刚刚
skmksd完成签到,获得积分10
刚刚
等等发布了新的文献求助10
1秒前
3秒前
4秒前
烟花应助ccop采纳,获得10
4秒前
Ava应助sy采纳,获得10
4秒前
胖胖应助shinhung采纳,获得10
4秒前
4秒前
杨振发布了新的文献求助10
5秒前
5秒前
11发布了新的文献求助10
5秒前
6秒前
汉堡包应助天真初蝶采纳,获得10
6秒前
我有一头小毛驴应助咖飞采纳,获得20
6秒前
等等完成签到,获得积分10
7秒前
Tvemiy发布了新的文献求助30
7秒前
7秒前
001完成签到,获得积分20
8秒前
8秒前
hcq完成签到,获得积分20
9秒前
apple完成签到,获得积分10
10秒前
10秒前
夕荀发布了新的文献求助10
10秒前
11秒前
小王同学发布了新的文献求助30
11秒前
啊咧完成签到,获得积分10
12秒前
hcq发布了新的文献求助30
12秒前
12秒前
13秒前
apple发布了新的文献求助10
13秒前
摆烂王子发布了新的文献求助10
14秒前
14秒前
wanci应助忧郁的猕猴桃采纳,获得10
15秒前
李健应助好事会发生采纳,获得10
15秒前
冬天完成签到,获得积分10
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543673
求助须知:如何正确求助?哪些是违规求助? 3121002
关于积分的说明 9345096
捐赠科研通 2819038
什么是DOI,文献DOI怎么找? 1549916
邀请新用户注册赠送积分活动 722318
科研通“疑难数据库(出版商)”最低求助积分说明 713137