Two dimensional confinement induced discontinuous chain transitions for augmented electrocaloric cooling

材料科学 过热(电) 电场 数码产品 纳米技术 铁电聚合物 相变 制冷 光电子学 电介质 机械工程 铁电性 电气工程 凝聚态物理 物理 量子力学 工程类
作者
Fang Wang,Zhong-Ye Wang,Yaorong Luo,Ming‐Ding Li,Yurong Yang,Wei Li,Xiaoliang Wang,Tiannan Yang,Qun‐Dong Shen
出处
期刊:Nature Communications [Springer Nature]
卷期号:16 (1)
标识
DOI:10.1038/s41467-024-55726-5
摘要

Overheating remains a major barrier to chip miniaturization, leading to device malfunction. Addressing the urgent need for thermal management promotes the development of solid-state electrocaloric cooling. However, enhancing passive heat dissipation through two-dimensional materials in electrocaloric polymers typically compromises the electrocaloric effect. In this work, we utilize two-dimensional polyamide with porous structure and hydrogen bonding to achieve multiple polar conformations with short-range order in the electrocaloric composite polymers. The structure minimizes intermolecular interactions while reducing energy barriers for field-driven polar-nonpolar conformational transitions. The electrocaloric polymer exhibits doubled cooling efficiency at electric fields as low as 40 MV m−1. Additionally, the electrode design achieves a vertical deformation of 2 millimeters, demonstrating the feasibility of self-driven electric refrigeration devices. This porous organic two-dimensional material resolves cooling efficiency limitations from spatial confinement, advancing the integration of two-dimensional materials in flexible electronics. Solid-state cooling technology based on electrocaloric materials shows promising potential for addressing electronic overheating challenges. Here, the authors employ two-dimensional polyamide to enhance the electrocaloric cooling performance by reducing intermolecular interactions and facilitating electrocaloric phase transitions thereby, offering insights into the application of spatially confined materials in flexible electronics.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
duanhuiyuan应助高兴凝安采纳,获得10
1秒前
皮皮完成签到,获得积分20
1秒前
1秒前
2秒前
SciGPT应助亭子采纳,获得10
2秒前
NexusExplorer应助侯人雄采纳,获得10
3秒前
小龅牙吖发布了新的文献求助10
4秒前
zhaoman发布了新的文献求助10
5秒前
cocolu应助li采纳,获得10
5秒前
gigi完成签到,获得积分20
6秒前
李爱国应助哭泣的采波采纳,获得10
6秒前
weige完成签到,获得积分10
6秒前
aerjin发布了新的文献求助10
6秒前
Owen应助哟哟哟采纳,获得10
7秒前
皮皮发布了新的文献求助10
7秒前
小豆泥发布了新的文献求助10
7秒前
杰杰子发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
11秒前
B哥完成签到,获得积分10
11秒前
酷波er应助sisyphus采纳,获得10
11秒前
12秒前
丘比特应助周四一采纳,获得10
12秒前
cooperko应助高贵水壶采纳,获得10
12秒前
iuho发布了新的文献求助10
13秒前
orixero应助zz77877采纳,获得10
13秒前
Luantyi完成签到,获得积分10
14秒前
毛毛完成签到,获得积分10
15秒前
15秒前
开放穆发布了新的文献求助10
15秒前
tangt糖糖完成签到,获得积分10
15秒前
guangshuang发布了新的文献求助10
16秒前
faith完成签到,获得积分10
16秒前
英俊的铭应助Bblythe采纳,获得10
17秒前
落寞访波发布了新的文献求助30
17秒前
17秒前
皮皮关注了科研通微信公众号
18秒前
RC_Wang应助Tonald Yang采纳,获得10
18秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Publish or Perish: Perceived Benefits versus Unintended Consequences, Second Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3390673
求助须知:如何正确求助?哪些是违规求助? 3002101
关于积分的说明 8801645
捐赠科研通 2688691
什么是DOI,文献DOI怎么找? 1472721
科研通“疑难数据库(出版商)”最低求助积分说明 681081
邀请新用户注册赠送积分活动 673849