Penalty Decomposition Methods for Second-Best Congestion Pricing Problems on Large-Scale Networks

分解 本德分解 计算机科学 比例(比率) 数学优化 运筹学 数学 生态学 量子力学 生物 物理
作者
Lei Guo,Wenxin Zhou,Xiaolei Wang,Hai Yang,Tijun Fan
出处
期刊:Informs Journal on Computing 卷期号:37 (6): 1542-1559
标识
DOI:10.1287/ijoc.2023.0144
摘要

The second-best congestion pricing (SBCP) problem is one of the most challenging problems in transportation because of its two-level hierarchical structure. In spite of various intriguing attempts at solving SBCP, existing solution methods are either heuristic without a convergence guarantee or suitable for solving SBCP on small networks only. In this paper, we first reveal some convexity-based structural properties of the marginal value function reformation of SBCP, and then, by effectively exploiting these structural properties, we propose two dedicated decomposition methods for solving SBCP on large-scale networks, which are different from existing methods in that they avoid linearizing nonconvex functions. We establish the convergence of the two decomposition methods under commonly used conditions and provide the maximum number of iterations for deriving an approximate stationary solution. The computational experiments based on a collection of real road networks show that in comparison with three existing popular methods, the two proposed methods are capable of solving SBCP on larger-scale networks, and for instances that can be solved by existing methods, the two proposed methods are substantially faster. History: Accepted by Pascal Van Hentenryck, Area Editor for Computational Modeling: Methods and Analysis. Funding: This work was supported by the National Natural Science Foundation of China [Grants 72032001, 72431007, 72131007, 72021002, and 12271161]. L. Guo was also supported by the Natural Science Foundation of Shanghai [Grant 22ZR1415900]. X. Wang was also supported by the Fundamental Research Funds for the Central Universities and CCF-DiDi GAIA Collaborative Research Funds for Young Scholars. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0144 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0144 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CodeCraft应助dong采纳,获得10
1秒前
三十发布了新的文献求助10
1秒前
123发布了新的文献求助10
2秒前
LJM发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
七七发布了新的文献求助10
2秒前
善学以致用应助yzr采纳,获得10
2秒前
2秒前
2秒前
Vanessa发布了新的文献求助10
3秒前
领导范儿应助张雯雯采纳,获得10
4秒前
Owen应助frank采纳,获得10
4秒前
小粉红wow~~~完成签到,获得积分10
4秒前
浮游应助hyw采纳,获得10
4秒前
echo完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
哈哈哈哈完成签到,获得积分10
6秒前
6秒前
爆米花应助鸭鸭采纳,获得30
6秒前
CipherSage应助曾长石采纳,获得30
6秒前
无脚鸟发布了新的文献求助10
6秒前
WWK13完成签到,获得积分20
6秒前
6秒前
6秒前
QQLL发布了新的文献求助10
6秒前
安芳完成签到,获得积分10
6秒前
OMO完成签到,获得积分10
7秒前
张皓123发布了新的文献求助10
7秒前
7秒前
玛卡巴卡发布了新的文献求助10
7秒前
独特天问发布了新的文献求助10
7秒前
ZT发布了新的文献求助80
7秒前
李健的小迷弟应助张兰兰采纳,获得10
8秒前
燃气电视机完成签到,获得积分10
8秒前
MySun完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624997
求助须知:如何正确求助?哪些是违规求助? 4710900
关于积分的说明 14952616
捐赠科研通 4778944
什么是DOI,文献DOI怎么找? 2553493
邀请新用户注册赠送积分活动 1515444
关于科研通互助平台的介绍 1475731