清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Deep learning application for marketing engagement – its thematic evolution

营销 业务 在线广告 广告 数字营销 客户参与度 数据科学 计算机科学 社会化媒体 万维网 互联网
作者
Billy T.W. Yu,S. Liu
出处
期刊:Journal of Research in Interactive Marketing [Emerald (MCB UP)]
标识
DOI:10.1108/jrim-08-2024-0371
摘要

Purpose This analysis examines the evolving role of deep learning in engagement marketing research. It tries to address a critical knowledge gap despite the rapid growth of artificial intelligence (AI) applications in this field. Design/methodology/approach Using bibliometric techniques, this study analyzes Scopus data to investigate the evolution of engagement marketing research influenced by technology. Overlapping maps, evolution maps and strategic diagrams reveal key trends and intellectual structures within this dynamic field. Findings Our analysis reveals key trends in deep learning applications, like focuses on language-interaction, interactivity-privacy and human-focus satisfaction. While results show the contribution in foundational works like linguistics, algorithms and interactive marketing, they also raise concerns about the algorithmic bias, privacy violations and etc. Research limitations/implications While Scopus data offers valuable insights, our analysis acknowledges its limitations on publication language. Future research should treasure foundational works and historical context for comprehensive understandings. Additionally, addressing emerging challenges such as negative customer experiences and fairness is crucial for future studies. Originality/value This review provides a comprehensive perspective on deep learning applications on engagement marketing research in the context of interactive marketing. We present trends and thematic structures with practical implications for scholars and practitioners. It presents a fuller intellectual landscape and suggests that future research directions shall prioritize a human-centered approach to AI implementation, ultimately fostering genuine customer connections.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
20秒前
Polymer72应助kukudou2采纳,获得10
24秒前
月军完成签到,获得积分10
1分钟前
kukudou2完成签到,获得积分10
2分钟前
2分钟前
Polymer72发布了新的文献求助30
2分钟前
无悔完成签到 ,获得积分10
2分钟前
刘刘完成签到 ,获得积分10
2分钟前
奶糖喵完成签到 ,获得积分10
3分钟前
研友_VZG7GZ应助魔幻的修洁采纳,获得10
3分钟前
vbnn完成签到 ,获得积分10
3分钟前
3分钟前
xiao完成签到 ,获得积分10
4分钟前
4分钟前
跳跃曼文发布了新的文献求助10
4分钟前
4分钟前
4分钟前
salty完成签到 ,获得积分10
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
6分钟前
黑球发布了新的文献求助10
6分钟前
6分钟前
英俊的铭应助黑球采纳,获得10
6分钟前
游大达完成签到,获得积分10
6分钟前
威武鹤轩完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
嬗变的天秤完成签到,获得积分10
7分钟前
7分钟前
通科研完成签到 ,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
ZHANG完成签到 ,获得积分10
7分钟前
7分钟前
8分钟前
月儿完成签到 ,获得积分10
8分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3335399
求助须知:如何正确求助?哪些是违规求助? 2964501
关于积分的说明 8614175
捐赠科研通 2643375
什么是DOI,文献DOI怎么找? 1447427
科研通“疑难数据库(出版商)”最低求助积分说明 670615
邀请新用户注册赠送积分活动 658991