Physics-guided neural network for structural health monitoring with lamb waves through boundary reflection elimination

兰姆波 结构健康监测 杠杆(统计) 声学 传感器 计算机科学 人工神经网络 导波测试 反射(计算机编程) 小波 边界(拓扑) 表面波 物理 人工智能 光学 工程类 结构工程 数学分析 数学 程序设计语言
作者
Yang Song,Shengbo Shan,Yuanman Zhang,Li Cheng
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
被引量:5
标识
DOI:10.1177/14759217241305050
摘要

Lamb-wave-based structural health monitoring (SHM) technology for damage location in plate-like structures relies on the postprocessing of captured signals after interacting with damage. Traditional methods typically leverage the time of flight (ToF) of scattered waves from damage. However, these methods are prone to reflected waves from structural boundaries which mix with scattered waves from damage. This is a vital problem faced by most ToF-based detection methods, which seriously narrows the inspection area. To tackle this problem, a machine learning framework, consisting of a multiscale spatiotemporal (MSST) fusion network, is proposed to facilitate the accurate extraction of the ToF of scattered waves through eliminating the influence of boundary reflections. Experiments are conducted with the time-domain Lamb wave signals recorded by a tactically designed piezoelectric sensor array on a 2-mm-thick Al-6061 plate. A pair of circle magnets is attached onto the plate as the wave reflectors. Through step-by-step moving of the magnets in the predefined grids, the corresponding Lamb wave signals are measured to construct a database. An MSST is subsequently designed to minimize the error between estimated and theoretical ToFs, with wavelet coefficients of the signals and transducer position as inputs. The model is trained with the Adam algorithm where 80% of samples in the database are used for training and the rest for evaluation. The final validations are conducted with the scatters off the predefined grids. Results demonstrate that the designed neural network architecture can effectively eliminate boundary reflections and enable precise ToF extraction of the scattered waves from damage. This allows the enlargement of the detection area and presents a promising and useful tool for enhancing the detection performance of existing SHM methods in complex structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
水星红豆关注了科研通微信公众号
刚刚
贪玩雁山完成签到,获得积分10
刚刚
冷艳一德发布了新的文献求助10
1秒前
迷路柏柳发布了新的文献求助10
1秒前
wxyshare给勤奋的凌香的求助进行了留言
2秒前
2秒前
英姑应助xxw采纳,获得10
2秒前
3秒前
ShuanglaiLiu发布了新的文献求助30
3秒前
xanderxue发布了新的文献求助10
3秒前
4秒前
情怀应助AixGnad采纳,获得30
5秒前
YMing完成签到,获得积分20
5秒前
羊羊羊完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
刘欣雨发布了新的文献求助10
6秒前
6秒前
7秒前
Lucas应助媛媛采纳,获得10
7秒前
YMing发布了新的文献求助10
8秒前
海晨发布了新的文献求助10
8秒前
8秒前
蝎y发布了新的文献求助10
9秒前
彭佳乐发布了新的文献求助10
9秒前
9秒前
yuyu发布了新的文献求助10
10秒前
10秒前
xanderxue完成签到,获得积分10
11秒前
Yuki酱发布了新的文献求助10
11秒前
ShuanglaiLiu完成签到,获得积分20
11秒前
12秒前
科研通AI6应助皮卡丘采纳,获得10
13秒前
韦老虎完成签到,获得积分20
14秒前
慕青应助笑点低的语蕊采纳,获得10
14秒前
14秒前
背后幻姬完成签到,获得积分10
14秒前
Francesca发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5571571
求助须知:如何正确求助?哪些是违规求助? 4656806
关于积分的说明 14717928
捐赠科研通 4597626
什么是DOI,文献DOI怎么找? 2523291
邀请新用户注册赠送积分活动 1494143
关于科研通互助平台的介绍 1464280