Physics-guided neural network for structural health monitoring with lamb waves through boundary reflection elimination

兰姆波 结构健康监测 杠杆(统计) 声学 传感器 计算机科学 人工神经网络 导波测试 反射(计算机编程) 小波 边界(拓扑) 表面波 物理 人工智能 光学 工程类 结构工程 数学分析 数学 程序设计语言
作者
Yang Song,Shengbo Shan,Yuanman Zhang,Li Cheng
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
标识
DOI:10.1177/14759217241305050
摘要

Lamb-wave-based structural health monitoring (SHM) technology for damage location in plate-like structures relies on the postprocessing of captured signals after interacting with damage. Traditional methods typically leverage the time of flight (ToF) of scattered waves from damage. However, these methods are prone to reflected waves from structural boundaries which mix with scattered waves from damage. This is a vital problem faced by most ToF-based detection methods, which seriously narrows the inspection area. To tackle this problem, a machine learning framework, consisting of a multiscale spatiotemporal (MSST) fusion network, is proposed to facilitate the accurate extraction of the ToF of scattered waves through eliminating the influence of boundary reflections. Experiments are conducted with the time-domain Lamb wave signals recorded by a tactically designed piezoelectric sensor array on a 2-mm-thick Al-6061 plate. A pair of circle magnets is attached onto the plate as the wave reflectors. Through step-by-step moving of the magnets in the predefined grids, the corresponding Lamb wave signals are measured to construct a database. An MSST is subsequently designed to minimize the error between estimated and theoretical ToFs, with wavelet coefficients of the signals and transducer position as inputs. The model is trained with the Adam algorithm where 80% of samples in the database are used for training and the rest for evaluation. The final validations are conducted with the scatters off the predefined grids. Results demonstrate that the designed neural network architecture can effectively eliminate boundary reflections and enable precise ToF extraction of the scattered waves from damage. This allows the enlargement of the detection area and presents a promising and useful tool for enhancing the detection performance of existing SHM methods in complex structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海风发布了新的文献求助10
刚刚
dave0831发布了新的文献求助10
刚刚
刚刚
fu发布了新的文献求助10
刚刚
刚刚
1秒前
可爱的函函应助Jenaloe采纳,获得10
1秒前
2秒前
熊熊发布了新的文献求助10
3秒前
靓丽安珊发布了新的文献求助10
3秒前
yuzhi完成签到,获得积分10
3秒前
3秒前
3秒前
犹豫若云发布了新的文献求助30
4秒前
啦啦啦发布了新的文献求助10
4秒前
4秒前
5秒前
Lucas应助T拐拐采纳,获得10
6秒前
6秒前
在水一方应助JoshuaChen采纳,获得10
6秒前
6秒前
6秒前
小艳胡发布了新的文献求助10
7秒前
SYLH应助Ethan采纳,获得10
7秒前
Z1987完成签到,获得积分10
7秒前
白凌珍发布了新的文献求助10
7秒前
自由的水绿完成签到 ,获得积分10
7秒前
完美世界应助如意枫叶采纳,获得10
7秒前
忐忑的以旋完成签到,获得积分10
8秒前
8秒前
温暖的颜演完成签到,获得积分10
8秒前
艾斯喜爱发布了新的文献求助10
9秒前
9秒前
仲某某完成签到,获得积分10
9秒前
明明发布了新的文献求助10
9秒前
今后应助xiaxianong采纳,获得10
9秒前
11秒前
乘风破浪完成签到,获得积分10
11秒前
egnaro应助埋骨何须桑梓地采纳,获得10
11秒前
yannnis发布了新的文献求助10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600