Physics-guided neural network for structural health monitoring with lamb waves through boundary reflection elimination

兰姆波 结构健康监测 杠杆(统计) 声学 传感器 计算机科学 人工神经网络 导波测试 反射(计算机编程) 小波 边界(拓扑) 表面波 物理 人工智能 光学 工程类 结构工程 数学分析 数学 程序设计语言
作者
Yang Song,Shengbo Shan,Yuanman Zhang,Li Cheng
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241305050
摘要

Lamb-wave-based structural health monitoring (SHM) technology for damage location in plate-like structures relies on the postprocessing of captured signals after interacting with damage. Traditional methods typically leverage the time of flight (ToF) of scattered waves from damage. However, these methods are prone to reflected waves from structural boundaries which mix with scattered waves from damage. This is a vital problem faced by most ToF-based detection methods, which seriously narrows the inspection area. To tackle this problem, a machine learning framework, consisting of a multiscale spatiotemporal (MSST) fusion network, is proposed to facilitate the accurate extraction of the ToF of scattered waves through eliminating the influence of boundary reflections. Experiments are conducted with the time-domain Lamb wave signals recorded by a tactically designed piezoelectric sensor array on a 2-mm-thick Al-6061 plate. A pair of circle magnets is attached onto the plate as the wave reflectors. Through step-by-step moving of the magnets in the predefined grids, the corresponding Lamb wave signals are measured to construct a database. An MSST is subsequently designed to minimize the error between estimated and theoretical ToFs, with wavelet coefficients of the signals and transducer position as inputs. The model is trained with the Adam algorithm where 80% of samples in the database are used for training and the rest for evaluation. The final validations are conducted with the scatters off the predefined grids. Results demonstrate that the designed neural network architecture can effectively eliminate boundary reflections and enable precise ToF extraction of the scattered waves from damage. This allows the enlargement of the detection area and presents a promising and useful tool for enhancing the detection performance of existing SHM methods in complex structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俏皮诺言发布了新的文献求助10
刚刚
归途发布了新的文献求助10
1秒前
深情安青应助xiehexin采纳,获得10
2秒前
科研通AI2S应助飞快的孱采纳,获得10
3秒前
3秒前
5秒前
双黄完成签到,获得积分0
5秒前
尘世的彷徨者完成签到,获得积分10
5秒前
6秒前
无忧无虑完成签到 ,获得积分10
6秒前
7秒前
深情安青应助LANER采纳,获得10
8秒前
8秒前
8秒前
WFF发布了新的文献求助10
9秒前
zai发布了新的文献求助10
9秒前
wwhh发布了新的文献求助10
9秒前
Bilipear发布了新的文献求助10
10秒前
一站到底完成签到,获得积分10
10秒前
FashionBoy应助奶茶采纳,获得10
12秒前
在水一方应助俏皮诺言采纳,获得10
12秒前
港岛妹妹发布了新的文献求助10
13秒前
李宇超完成签到 ,获得积分10
13秒前
犹豫斑马发布了新的文献求助10
13秒前
天天快乐应助朴素海亦采纳,获得10
13秒前
14秒前
15秒前
rumeng完成签到,获得积分10
16秒前
16秒前
Jasin完成签到,获得积分10
17秒前
含蓄雪碧完成签到,获得积分20
17秒前
18秒前
张张孟孟发布了新的文献求助10
18秒前
18秒前
qly完成签到,获得积分10
20秒前
凌凌发布了新的文献求助10
20秒前
111完成签到,获得积分10
20秒前
pluto应助WFF采纳,获得10
21秒前
852应助WFF采纳,获得10
21秒前
大方易梦发布了新的文献求助10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Cognitive Paradigms in Knowledge Organisation 500
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306889
求助须知:如何正确求助?哪些是违规求助? 2940724
关于积分的说明 8498169
捐赠科研通 2614869
什么是DOI,文献DOI怎么找? 1428544
科研通“疑难数据库(出版商)”最低求助积分说明 663445
邀请新用户注册赠送积分活动 648283