Physics-guided neural network for structural health monitoring with lamb waves through boundary reflection elimination

兰姆波 结构健康监测 杠杆(统计) 声学 传感器 计算机科学 人工神经网络 导波测试 反射(计算机编程) 小波 边界(拓扑) 表面波 物理 人工智能 光学 工程类 结构工程 数学分析 数学 程序设计语言
作者
Yang Song,Shengbo Shan,Yuanman Zhang,Li Cheng
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
被引量:5
标识
DOI:10.1177/14759217241305050
摘要

Lamb-wave-based structural health monitoring (SHM) technology for damage location in plate-like structures relies on the postprocessing of captured signals after interacting with damage. Traditional methods typically leverage the time of flight (ToF) of scattered waves from damage. However, these methods are prone to reflected waves from structural boundaries which mix with scattered waves from damage. This is a vital problem faced by most ToF-based detection methods, which seriously narrows the inspection area. To tackle this problem, a machine learning framework, consisting of a multiscale spatiotemporal (MSST) fusion network, is proposed to facilitate the accurate extraction of the ToF of scattered waves through eliminating the influence of boundary reflections. Experiments are conducted with the time-domain Lamb wave signals recorded by a tactically designed piezoelectric sensor array on a 2-mm-thick Al-6061 plate. A pair of circle magnets is attached onto the plate as the wave reflectors. Through step-by-step moving of the magnets in the predefined grids, the corresponding Lamb wave signals are measured to construct a database. An MSST is subsequently designed to minimize the error between estimated and theoretical ToFs, with wavelet coefficients of the signals and transducer position as inputs. The model is trained with the Adam algorithm where 80% of samples in the database are used for training and the rest for evaluation. The final validations are conducted with the scatters off the predefined grids. Results demonstrate that the designed neural network architecture can effectively eliminate boundary reflections and enable precise ToF extraction of the scattered waves from damage. This allows the enlargement of the detection area and presents a promising and useful tool for enhancing the detection performance of existing SHM methods in complex structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爆米花应助实验室纯牲采纳,获得10
1秒前
lizhiqian2024发布了新的文献求助10
1秒前
Owen应助AHHUI采纳,获得30
1秒前
1秒前
2秒前
阳光的虔纹完成签到 ,获得积分10
2秒前
万能图书馆应助llllqqq采纳,获得10
2秒前
wang发布了新的文献求助10
2秒前
晨雾锁阳完成签到 ,获得积分10
3秒前
Ava应助Hommand_藏山采纳,获得10
3秒前
3秒前
3秒前
Criminology34应助Blossom采纳,获得10
3秒前
丘比特应助gzmejiji采纳,获得10
4秒前
科研通AI6应助huihui采纳,获得10
4秒前
zhl发布了新的文献求助10
4秒前
Beacon发布了新的文献求助10
4秒前
蓝心发布了新的文献求助10
4秒前
4秒前
1751587229完成签到,获得积分10
5秒前
Mufreh给zyt的求助进行了留言
5秒前
专注的语堂完成签到,获得积分10
5秒前
华仔应助lizhiqian2024采纳,获得10
5秒前
袁诗槐发布了新的文献求助50
6秒前
6秒前
6秒前
1111发布了新的文献求助10
7秒前
7秒前
123...完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
Gjjjjjjj发布了新的文献求助10
8秒前
8秒前
曾经厉完成签到,获得积分10
9秒前
爆米花应助调皮的巧凡采纳,获得10
9秒前
香蕉觅云应助YYJ采纳,获得10
9秒前
HeWang发布了新的文献求助10
9秒前
高高发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759534
求助须知:如何正确求助?哪些是违规求助? 5520722
关于积分的说明 15394460
捐赠科研通 4896615
什么是DOI,文献DOI怎么找? 2633799
邀请新用户注册赠送积分活动 1581879
关于科研通互助平台的介绍 1537300