医学
图像质量
对比噪声比
核医学
迭代重建
图像噪声
功勋
放射科
图像(数学)
人工智能
光学
物理
计算机科学
作者
Hyun Joo Lee,Jin Sil Kim,Jeong Kyong Lee,Hye Ah Lee,Seongyong Pak
标识
DOI:10.1016/j.ejrad.2022.110659
摘要
This study determined whether image quality and detectability of ultralow-dose hepatic multiphase CT (ULDCT, 33.3% dose) using a vendor-agnostic deep learning model(DLM) are noninferior to those of standard-dose CT (SDCT, 100% dose) using model-based iterative reconstruction(MBIR) in patients with chronic liver disease focusing on arterial phase.Sixty-seven patients underwent hepatic multiphase CT using a dual-source scanner to obtain two different radiation dose CT scans (100%, SDCT and 33.3%, ULDCT). ULDCT using DLM and SDCT using MBIR were compared. A margin of -0.5 for the difference between the two protocols was pre-defined as noninferiority of the overall image quality of the arterial phase image. Quantitative image analysis (signal to noise ratio[SNR] and contrast to noise ratio[CNR]) was also conducted. The detectability of hepatic arterial focal lesions was compared using the Jackknife free-response receiver operating characteristic analysis. Non-inferiority was satisfied if the margin of the lower limit of 95%CI of the difference in figure-of-merit was less than -0.1.Mean overall arterial phase image quality scores with ULDCT using DLM and SDCT using MBIR were 4.35 ± 0.57 and 4.08 ± 0.58, showing noninferiority (difference: -0.269; 95 %CI, -0.374 to -0.164). ULDCT using DLM showed a significantly superior contrast-to-noise ratio of arterial enhancing lesion (p < 0.05). Figure-of-merit for detectability of arterial hepatic focal lesion was 0.986 for ULDCT using DLM and 0.963 for SDCT using MBIR, showing noninferiority (difference: -0.023, 95 %CI: -0.016 to 0.063).ULDCT using DLM with 66.7% dose reduction showed non-inferior overall image quality and detectability of arterial focal hepatic lesion compared to SDCT using MBIR.
科研通智能强力驱动
Strongly Powered by AbleSci AI